HDU4348 To the moon(主席树)

本文介绍了如何使用主席树解决一个关于区间修改和查询的动态问题,通过前缀和优化和标记永久化技术,降低空间复杂度,实现区间和的快速查询。核心思想是通过标记来维护区间和的变化,适用于需要频繁区间修改和查询的场景。
摘要由CSDN通过智能技术生成

题目链接: To the moon

大致题意

给你一串序列,每次对它有四种操作,
1.C l r d:将l到r之间所有的数+d,同时时间戳+1。
2.Q l r:查询当前时间戳下l到r的所有数的总和。
3.H l r t:.查询时间戳t下的l到r的所有数的和。
4.B t:将时间戳返回至t。

解题思路

主席树

这道题和许多的主席树题目不太一样, 这道题的思想是用主席树维护区间和问题, 而不是维护多棵权值线段树问题.

思路: 可以一开始把数组变成前缀和数组, 这样可以省去建初始树的操作. 相当于在主席树中记录对于原数组的修改操作.

对于区间修改, 如果我们采用pushdown的方式, 每次修改最多影响的点会有nlogn个, 空间复杂度算下来最坏为nmlogn, 这是不能接受的. 但是考虑到本题只需要维护区间和, 所以我们可以采用标记永久化的方式.

对于标记永久化, 即不下放懒标记, 定义和正常下放的懒标记同理, 都是表示当前节点的子节点需要加上懒标记. 在询问的时候, 如果询问到的区间是一个完整的区间, 则直接返回其区间和, 反之需要还需要加上当前树区间与询问区间的交集和. 交集和即为: len * add, 其中len为交集区间长度, add为当前节点的懒标记.

AC代码

#include <bits/stdc++.h>
#define rep(i, n) for (int i = 1; i <= (n); ++i)
using namespace std;
typedef long long ll;
const int N = 1E5 + 10;
ll w[N];
struct node {
	int l, r;
	ll sum;
	ll add; //只记录打在当前区间的标记, 不下传。(表示当前区间的子区间的lazy)
}t[N << 5];
int root[N], ind;
int intersection(int a, int b, int c, int d) { return min(b, d) - max(a, c) + 1; }

int build(int l, int r, ll c, int tl, int tr, int p) {
	int x = ++ind; t[x] = t[p];
	t[x].sum += intersection(l, r, tl, tr) * c;
	if (l <= tl and r >= tr) {
		t[x].add += c;
		return x;
	}

	int mid = tl + tr >> 1;
	if (l <= mid) t[x].l = build(l, r, c, tl, mid, t[p].l);
	if (r > mid) t[x].r = build(l, r, c, mid + 1, tr, t[p].r);
	return x;
}

ll ask(int l, int r, int tl, int tr, int x) {
	if (l <= tl and r >= tr) return t[x].sum;
	int mid = tl + tr >> 1;
	ll res = intersection(l, r, tl, tr) * t[x].add; //要累加上当前区间的标记
	if (l <= mid) res += ask(l, r, tl, mid, t[x].l);
	if (r > mid) res += ask(l, r, mid + 1, tr, t[x].r);
	return res;
}

int main()
{
	bool first = 1; //格式控制
	int n, m;
	while (~scanf("%d %d", &n, &m)) {
		ind = 0;
		first ? first = 0 : puts("");

		rep(i, n) scanf("%lld", &w[i]), w[i] += w[i - 1], root[i] = 0; //w存成前缀和形式, 就不用建初始版本了

		int cur = 0; //记录版本
		while (m--) {
			char s[5]; scanf("%s", s);
			if (*s == 'C') {
				cur++;
				int l, r, c; scanf("%d %d %d", &l, &r, &c);
				root[cur] = build(l, r, c, 1, n, root[cur - 1]);
			}
			else if (*s == 'Q') {
				int l, r; scanf("%d %d", &l, &r);
				printf("%lld\n", w[r] - w[l - 1] + ask(l, r, 1, n, root[cur]));
			}
			else if (*s == 'H') {
				int l, r, x; scanf("%d %d %d", &l, &r, &x);
				printf("%lld\n", w[r] - w[l - 1] + ask(l, r, 1, n, root[x]));
			}
			else scanf("%d", &cur), ind = root[cur + 1]; //加上这个ind的回溯, 可以节约很大的空间
		}
	}
	return 0;
}

END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

逍遥Fau

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值