题目链接: To the moon
大致题意
给你一串序列,每次对它有四种操作,
1.C l r d:将l到r之间所有的数+d,同时时间戳+1。
2.Q l r:查询当前时间戳下l到r的所有数的总和。
3.H l r t:.查询时间戳t下的l到r的所有数的和。
4.B t:将时间戳返回至t。
解题思路
主席树
这道题和许多的主席树题目不太一样, 这道题的思想是用主席树维护区间和问题, 而不是维护多棵权值线段树问题.
思路: 可以一开始把数组变成前缀和数组, 这样可以省去建初始树的操作. 相当于在主席树中记录对于原数组的修改操作.
对于区间修改, 如果我们采用pushdown的方式, 每次修改最多影响的点会有nlogn个, 空间复杂度算下来最坏为nmlogn, 这是不能接受的. 但是考虑到本题只需要维护区间和, 所以我们可以采用标记永久化的方式.
对于标记永久化, 即不下放懒标记, 定义和正常下放的懒标记同理, 都是表示当前节点的子节点需要加上懒标记. 在询问的时候, 如果询问到的区间是一个完整的区间, 则直接返回其区间和, 反之需要还需要加上当前树区间与询问区间的交集和. 交集和即为: len * add, 其中len为交集区间长度, add为当前节点的懒标记.
AC代码
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 1; i <= (n); ++i)
using namespace std;
typedef long long ll;
const int N = 1E5 + 10;
ll w[N];
struct node {
int l, r;
ll sum;
ll add; //只记录打在当前区间的标记, 不下传。(表示当前区间的子区间的lazy)
}t[N << 5];
int root[N], ind;
int intersection(int a, int b, int c, int d) { return min(b, d) - max(a, c) + 1; }
int build(int l, int r, ll c, int tl, int tr, int p) {
int x = ++ind; t[x] = t[p];
t[x].sum += intersection(l, r, tl, tr) * c;
if (l <= tl and r >= tr) {
t[x].add += c;
return x;
}
int mid = tl + tr >> 1;
if (l <= mid) t[x].l = build(l, r, c, tl, mid, t[p].l);
if (r > mid) t[x].r = build(l, r, c, mid + 1, tr, t[p].r);
return x;
}
ll ask(int l, int r, int tl, int tr, int x) {
if (l <= tl and r >= tr) return t[x].sum;
int mid = tl + tr >> 1;
ll res = intersection(l, r, tl, tr) * t[x].add; //要累加上当前区间的标记
if (l <= mid) res += ask(l, r, tl, mid, t[x].l);
if (r > mid) res += ask(l, r, mid + 1, tr, t[x].r);
return res;
}
int main()
{
bool first = 1; //格式控制
int n, m;
while (~scanf("%d %d", &n, &m)) {
ind = 0;
first ? first = 0 : puts("");
rep(i, n) scanf("%lld", &w[i]), w[i] += w[i - 1], root[i] = 0; //w存成前缀和形式, 就不用建初始版本了
int cur = 0; //记录版本
while (m--) {
char s[5]; scanf("%s", s);
if (*s == 'C') {
cur++;
int l, r, c; scanf("%d %d %d", &l, &r, &c);
root[cur] = build(l, r, c, 1, n, root[cur - 1]);
}
else if (*s == 'Q') {
int l, r; scanf("%d %d", &l, &r);
printf("%lld\n", w[r] - w[l - 1] + ask(l, r, 1, n, root[cur]));
}
else if (*s == 'H') {
int l, r, x; scanf("%d %d %d", &l, &r, &x);
printf("%lld\n", w[r] - w[l - 1] + ask(l, r, 1, n, root[x]));
}
else scanf("%d", &cur), ind = root[cur + 1]; //加上这个ind的回溯, 可以节约很大的空间
}
}
return 0;
}