matlab卷积神经网络的创建与图片识别

1、Deep Network Designer工具箱使用介绍

2、神经网络的GPU训练

3、预测与分类

一、Deep Network Designer工具箱使用介绍

相比BP、GRNN、RBF、NARX神经网络的简单结构,深度神经网络结构更加复杂,比如卷积神经网络CNN,长短时序神经网络LSTM等,matlab集成了深度学习工具箱,可输入如下指令调用:

Deep Network Designer

可以使用别人的网络架构也可以自己创建,点击“空白网络”创建。如下图最左侧是常用的各种网络层,可根据文献上的网络结构或者自己设计的结构任意组合,具体模块参数双击进行设计,前提是网络数据维度没有错误。如图所示,为作者创建的用于RGB图像分类的卷积神经网络CNN结构,具体设计过程后续出。构建完成,点击“分析”可查看是否有错误,无错误之后可通过“导出”得到网络架构的代码即layers。

layers = [
    imageInputLayer([120 160 3],"Name","imageinput")   %输入相机帧
    convolution2dLayer([3 3],15,"Name&
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值