巨斧砍大树
Description
阿福最近练就了一个新的招式:巨斧砍大树。这个招式可以砍掉一颗二叉搜索树的某个子树。现在,阿福面前有一颗 nn 个结点的二叉搜索树,他要使用 mm 次招式,于是他想询问你每次使用「巨斧砍大树」后二叉搜索树会被砍成什么样子。
二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树:若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;它的左、右子树也分别为二叉搜索树。
Input
第一行输入 22 个整数 nn, mm (1 \leqslant n, m \leqslant 10)(1⩽n,m⩽10)。表示二叉搜索树的结点个数和招式使用次数。
第二行输入 nn 个空格隔开的整数 vv (1 \leqslant v \leqslant 10)(1⩽v⩽10),表示二叉搜索树是以此序列顺序插入生成的二叉树(保证互不相同)。
接下来输入 mm 行,每行一个整数 ww (1 \leqslant w \leqslant 10)(1⩽w⩽10),表示阿福要砍掉结点上数值为 ww 的子树(保证 ww 是初始二叉树上存在的数值)。
Output
对于每次砍树,如果成功砍掉子树,则先输出一行 Cut x,其中 xx 为被砍掉子树的根节点上的数值。如果要砍掉的结点在之前已被砍掉,则输出一行 Already cut x,xx 的含义同上。
随后输出一行,表示此次砍树结束后当前二叉树的中序遍历结果,以空格分隔(行末没有多余空格,如果整颗二叉树已为空,则输出一行空行)。
Samples
Sample #1
Input
5 5
1 3 2 4 5
5
2
3
4
1
Output
Cut 5
1 2 3 4
Cut 2
1 3 4
Cut 3
1
Already cut 4
1
Cut 1
分析:
二叉搜索树的建立和删除
#include <bits/stdc++.h>
#include <string.h>
using namespace std;
const int N=1e6 +10;
typedef struct node{
int data;
struct node *l,*r;
}Tree;
Tree *root;
char a[110],b[110];
int n,i=0,j,t,m,sum,flag,p;
Tree *creat(int k,Tree *root){//先序建树
if(!root){//二叉树为空时
root=new Tree;
root->data=k;
//cout<<root->data;
root->l=NULL;
root->r=NULL;
return root;
}
if(root->data>k)
root->l=creat(k,root->l);
else root->r=creat(k,root->r);
return root;
}
Tree *cut(Tree *root,int t){
if(!root)
cout<<"Already cut "<<t<<endl;
else{
if(root->data==t){
root=NULL;
cout<<"Cut "<<t<<endl;
}
else if(t<root->data)
root->l=cut(root->l,t);
else
root->r=cut(root->r,t);
}
return root;
}
void mid(Tree *root){//中序遍历
if(root){
mid(root->l);
if(!flag){
cout<<root->data;
flag=1;
}
else
cout<<" "<<root->data;
mid(root->r);
}
}
int main(){
cin>>n>>m;
Tree *root=NULL;
while(n--){
int k;
cin>>k;
root=creat(k,root);
}
while(m--){
flag=0;
cin>>t;
root=cut(root,t);
mid(root);
cout<<endl;
}
return 0;
}