educoder--MapReduce基础实战各关卡通关答案

这篇博客介绍了MapReduce的基础应用,包括成绩统计、文件内容合并去重和信息挖掘。通过三个实战关卡,详细阐述了MapReduce在处理大数据问题时的操作步骤和关键代码。
摘要由CSDN通过智能技术生成

第1关:成绩统计:

任务描述
相关知识
什么是MapReduce
如何使用MapReduce进行运算
代码解释
编程要求
测试说明
任务描述
本关任务:使用Map/Reduce计算班级中年龄最大的学生。

相关知识
为了完成本关任务,你需要掌握:1.什么是MapReduce,2.如何使用MapReduce进行运算。

什么是MapReduce
MapReduce是一种可用于数据处理的编程模型,我们现在设想一个场景,你接到一个任务,任务是:挖掘分析我国气象中心近年来的数据日志,该数据日志大小有3T,让你分析计算出每一年的最高气温,如果你现在只有一台计算机,如何处理呢?我想你应该会读取这些数据,并且将读取到的数据与目前的最大气温值进行比较。比较完所有的数据之后就可以得出最高气温了。不过以我们的经验都知道要处理这么多数据肯定是非常耗时的。

如果我现在给你三台机器,你会如何处理呢?看到下图你应该想到了:最好的处理方式是将这些数据切分成三块,然后分别计算处理这些数据(Map),处理完毕之后发送到一台机器上进行合并(merge),再计算合并之后的数据,归纳(reduce)并输出。

这就是一个比较完整的MapReduce的过程了。

开始你的任务吧,祝你成功!

答案代码--------------------------------------
import java.io.IOException;
import java.util.StringTokenizer;
 
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {
   
    /********** Begin **********/
	//Mapper函数
    public static class TokenizerMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
   
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
        private int maxValue = 0;
        public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
   
            StringTokenizer itr = new StringTokenizer(value.toString(),"\n");
            while (itr.hasMoreTokens()) {
   
                String[] str = itr.nextToken().split(" ");
                String name = str[0];
                one.set(Integer.parseInt(str[1]));
                word.set(name);
                context.write(word,one);
            }
            //context.write(word,one);
        }
    }
    public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
   
        private IntWritable result = new IntWritable();
        public void reduce(Text key, Iterable<IntWritable> values, Context context)
                throws IOException, InterruptedException {
   
            int maxAge = 0;
            int age = 0;
            for (IntWritable intWritable 
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值