基于GPU深度学习库的安装教程深度讲解(tensorflow,pytorch)
在安装tensorflow或者pytorch的之前我们需要确认自己的电脑是N卡(本篇介绍的为N卡)
通常电脑内已经安装好了,显卡驱动和cuda。这时候我们可以查看一下电脑已经安装的cuda版本
cuda版本可以通过按win+R然后输入cmd指令打开Command shell。输入nvidia --smi查看cuda版本


这里我的cuda版本是11.6,我们就需要根据cuda版本下载对应的CUDA Toolkit,如图我下载的就是红色方框中的,也可以选择版本小于11.6的都行,(https://developer.nvidia.com/cuda-toolkit-archive)

接下来就是决定cuDNN的版本,登录这个网站下载与之对应的cuDNN(https://developer.nvidia.com/rdp/cudnn-archive)

这里因为我的cuda版本是11.6,使用我下载红色框内的就好啦
记住,CUDA Toolkit和cudnn的下载都是根据cuda的版本来确定的别搞错了!!!
下载完成后,解压cuDNN文件,将cuDNN文件中对应的文件移动到cuda对用安装目录中,注意不要移动到错误的位置。
将文件全部一一对应的拷贝进去就好啦!!!
bin里面的放到CUDA\v11.6\bin
include里面放到CUDA\v11.6\include
lib/x64里面的放到CUDA\v11.6\lib\x64
然后添加环境变量C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\lib\x64

上面两个环境变量是安装CUDA Toolkit的时候自动加加进去的。
好了,现在就是最后一步安装tensorflow,或者pytorch了!!!!!
tensorflow安装
tensorflow的安装需要注意版本,可以登录官网看版本,要下载对应版本的tensorflow就行!否则就会出错!!
(https://tensorflow.google.cn/install/source_windows#install_python_and_the_tensorflow_package_dependencies)

目前我的cuda版本和cudnn版本遥遥领先,所以以上的版本我都可以下载使用。
但是比如说最新的tensorflow-gpu2.12版本的要求cuda版本在11.8以上,那么这种情况我就没办法使用tensorflow-gpu2.12了。

好了,tensorflow的安装到此就结束了
pytorch的安装
pytorch的安装也要看cuda的版本号而定
可以通过https://pytorch.org/get-started/previous-versions/网页直接查看

这里我直接复杂这条指令就可以直接安装了,非常方便!!!大家也可以根据自己的版本号决定下载不同版本的pytorch。
完结!!!希望大家搭建深度学习环境都可以顺利啊!!
本文详细指导了如何在NVIDIAGPU环境下安装Tensorflow和Pytorch,包括检查CUDA版本,下载并配置CUDNN,以及根据CUDA版本选择合适的库版本。
829

被折叠的 条评论
为什么被折叠?



