最小生成树定义:
- 在一个给定的无向图中,求一棵树使得这棵树拥有图中所有的顶点
- 所有边都是来自图中的边
- 满足整棵树的边权之和最小
最小生成树性质:
- ①最小生成树是树,因此其边数等于顶点数减一,且树内一定不会有环
- ②对给定的图,其最小生成树可以不唯一,但其边权之和一定是唯一的
- ③由于最小生成树是在无向图上生成的,因此其根结点可以是这棵书上的任意一个结点,题目中涉及到最小生成树本身的输出,为了使最小生成树唯一,一般都会直接给出根结点,题目中涉及到最小生成树边权输出,边权之和一样
prim算法
- 用来解决最小生成树问题
- prim算法与DIjkstra算法思想几乎一致
- DIjkstra算法:起点s到顶点d的最短距离
- prim算法:起点s到集合d的最短距离,默认起点为0或者1
prim算法代码实现
int n,map[maxn][maxn];
int d[maxn];
int vis[maxn];
int prim(){
mm(d,inf);
d[0]=0;
int ans=0;
for(int i=0;i<n;i++){
int u=-1,minn=inf;
for(int j=0;j<n;j++){
if(!vis[j]&&d[j]<minn){
u=j;
minn=d[j];
}
}
if(u==-1) return -1;
vis[u]=1;
ans+=d[u];
for(int v=0;v<n;v++){
if(!vis[v]&&map[u][v]!=inf&&map[u][v]<d[v]){
d[v]=map[u][v];
}
}
}
return ans;
}
题目链接:
公路村村通 (30分)