自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 朴素贝叶斯原理推导及实现

朴素贝叶斯原理推导及sklearn实现代码来源:[link]https://github.com/datawhalechina/machine-learning-toy-code/tree/main/ml-with-sklearn朴素贝叶斯的假设朴素贝叶斯做了如下假设:P(X=x∣Y=ck)=P(X(1)=x(1),...,X(n)=x(n)∣Y=ck)=∏i=1NP(X(j)=x(j)∣Y=ck)P(X=x|Y=c_k) = P(X^{(1)}=x^{(1)}, ...,X^{(n)}=x^{(n

2021-12-21 19:54:28 171

原创 组队学习(数列极限)

数列极限数列极限的考点:数列极限的性质性质分为唯一性,有界性和保号性。其中保号性的脱帽法和戴帽比较常用,脱帽法为极限值>(<)0,则数列>(<)0。戴帽法则为数列>(<)0,极限值>=0(<=0)。由于极限的唯一性,故判断极限的存在可通过拆分子列,观察子列是否发散或两个子列极限是否相等来判断数列是否发散。只要有一个子列发散,原数列即发散。常见拆分数列的方法为拆分为偶数列和奇数列。数列极限存在的判断数列极限存在的判断方法有极限的唯一性和单调

2021-08-21 13:54:30 882

原创 组队学习

2021-08-18 18:01:04 148

原创 组队学习之特征工程

为什么要做特征工程特征工程的作用是辅助模型学习。在模型学习的不好的地方或者难以学习的地方,通过人为筛选或者人为构造特征的方式让模型原本很难学的地方更容易进行学习,进而拿到更好的效果。例如梯度提升树模型在高基数类别数据往往会表现的比较差,这时便可通过特征工程进行改变。以上参照公众号:kaggle竞赛宝典常见特征工程1.异常处理:通过箱线图(或 3-Sigma)分析删除异常值;BOX-COX 转换(处理有偏分布);长尾截断;2.特征归一化/标准化:标准化(转换为标准正态分布);归一化(抓换到

2021-04-19 21:38:38 241

原创 组队学习

EDA探索性分析能够帮助我们了解数据集,验证数据集经过学习,我认为EDA分析一般步骤1.查看数据集大体情况2.查看缺失值情况并可视化缺失值3.了解数据和特征分布5.相关性分析查看数据集大体情况查看大体数据集的方法有:data.head(), data.shape, data.describe(), data.info()查看缺失值情况查看缺失值情况可先对缺失值进行求和,即data.isnull().sum(),然后直接可视化,可视化可用missing库或者matplotlib库。注;

2021-04-16 22:40:37 157

原创 二手车价格预测竞赛组队学习分享

竞赛报名地址:添加链接描述本次分享内容主要是模型的评估指标评估指标概念模型的评估指标是我们对于一个模型效果的数值型量化。我个人认为就是对模型效果进行打分常见指标对于二分类任务:常见指标有accuracy,[Precision, Recall, F-score, Pr曲线], ROC-AUC曲线对于多分类任务:常见指标有accuracy,[宏平均和微平均, F-score]对于回归任务:常见指标有平均绝对误差(MAE), 均方误差(MSE),平均绝对百分误差(MAPE),均方根误差(Root M

2021-04-13 13:44:37 104

原创 线性可分支持向量机学习笔记分享

线性可分支持向量机与硬间间隔最大化线性可分向量机对于一个给定特征空间的数据集T={(x1,y1),(x2,y2),...(xN,yN)}T=\{(x_1,y_1),(x_2,y_2),...(x_N,y_N)\}T={(x1​,y1​),(x2​,y2​),...(xN​,yN​)}其中xi∈Rn,yi∈{+1,−1},i=1,2....,N,xix_i\in R^n,y_i\in \{+1,-1\},i=1,2....,N,x_ixi​∈Rn,yi​∈{+1,−1},i=1,2....,N,x

2020-08-26 16:17:23 225

原创 机器学习之决策树学习笔记分享

决策树思维导图特征选择特征选择是为了选取具有分类能力的特征,选取准则为信息增益或信息增益比信息增益def:特征A对训练数据D的信息增益为g(D,A),定义为集合D的经验熵H(D)和特征A给定条件下D的经验条件熵H(D|A)之差,即g(D,A)=H(D)−H(D∣A)g(D,A)=H(D)-H(D|A)g(D,A)=H(D)−H(D∣A)其中熵的定义为:H(P)=−∑i=1npilog2pi(pi=p(X=xi),i=1,2,3...)H(P)=-\sum_{i=1}^{n}p_ilog

2020-08-22 15:31:42 400

原创 机器学习之逻辑回归学习分享

逻辑回归原理逻辑回归虽然名字里有回归二字,但它其实是分类方法,主要用于二分类问题。逻辑回归利用了Logistic函数(即Sigmoid函数),函数形式为:使用逻辑回归预测模型基于鸢尾花的逻辑回归实践...

2020-08-17 19:38:18 394

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除