零、注意事项
- 左右同除x的时候,注意要让x≠0,x=0另外讨论。
- 例题9.33设函数 f ( x ) f(x) f(x)在 [ 0 , + ∞ ) [0,+\infty) [0,+∞)上可导, f ( 0 ) = 0 f(0) = 0 f(0)=0,且其反函数为g(x),若 ∫ 0 f ( x ) g ( t ) d t = x 2 e x \int _0^{f(x)}g(t)dt=x^2e^x ∫0f(x)g(t)dt=x2ex,求 f ( x ) f(x) f(x)
壹、极限
貳、导数
- 《18讲》P102 例题6.21
{ 1 l n ( 1 + x ) − 1 x + 3 } ′ = \left \{ \frac{1}{ln(1+x)} -\frac{1}{x} +3 \right \}'= {ln(1+x)1−x1+3}′= - 《1000题》29页29题 { ∫ 0 x t f ( t ) d t ∫ 0 x f ( t ) d t } ′ = \left \{ \frac{\int_{0}^{x}tf(t)dt}{\int_{0}^{x}f(t)dt} \right \} '= {∫0xf(t)dt∫0xtf(t)dt}′=
叁、积分
-
∫
0
1
l
n
(
1
+
x
)
d
x
\int_{0}^{1} ln(1+x)dx
∫01ln(1+x)dx
2.《1000题》29页23题:
lim n → ∞ 1 n ( 1 n + 1 + 1 n + 2 + ⋅ ⋅ ⋅ + 3 n 4 n ) = 3 − 2 ln 2 \lim_{n \to \infty} \frac{1}{n} (\frac{1}{n+1} +\frac{1}{n+2} +···+\frac{3n}{4n})=3-2\ln{2} n→∞limn1(n+11+n+21+⋅⋅⋅+4n3n)=3−2ln2
凑微分法
- 顶级难度
I = ∫ c o s 2 x − s i n x c o s x ( 1 + c o s x ⋅ e s i n x ) d x = l n ∣ c o s x ⋅ e s i n x 1 + c o s x ⋅ e s i n x ∣ + C . I = {\int\frac{cos^2x-sinx}{cosx(1+cosx·e^{sinx})}dx} = ln\left | {\frac{cosx·e^{sinx}}{1+cosx·e^{sinx}} } \right | + C. I=∫cosx(1+cosx⋅esinx)cos2x−sinxdx=ln∣∣∣∣1+cosx⋅esinxcosx⋅esinx∣∣∣∣+C.
公式法
利
用
公
式
(
14
)
(
区
间
简
化
公
式
)
∫
1
3
(
3
−
x
)
(
x
−
1
)
d
x
=
利用公式(14) (区间简化公式)\int_{1}^{3}\sqrt{(3-x)(x-1)}dx=
利用公式(14)(区间简化公式)∫13(3−x)(x−1)dx=
∫
0
x
d
t
1
+
e
t
=
\int_{0}^{x} \frac{dt}{1+e^t}=
∫0x1+etdt=