笨办法学数据结构 用二叉树思想解决堆排序问题

堆排序基本介绍

1) 排序是利用 这种数据结构而设计的一种排序算法,堆排序是一种 选择排序, 它的最坏,最好,平均时间复杂度均为 O( nlogn ) ,它也是不稳定排序
2) 是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶 , : 有要求结点的左孩子的值 右孩子的值的大小关系。
3) 个结点的值都小于或等于其左右孩子结点的值,称为小顶
4) 大顶堆举例说明

我们对堆中的结点按层进行编号,映射到数组中就是下面这个样:

大顶特点arr[i] >= arr[2*i+1] && arr[i] >= arr[2*i+2]  // i 对应第几个节点,i0开始编号

5) 小顶堆举例说明

 

顶堆:arr[i] <= arr[2*i+1] && arr[i] <= arr[2*i+2] // i 对应第几个节点,i0开始编

6) 升序采用大顶堆 降序采用小顶堆 

堆排序基本思想

 

堆排序的基本思想是:

1) 待排序序列构造成一个大顶
2) 时,整个序列的最大值就是堆顶的根节点
3) 其与末尾元素进行交换,此时末尾就为最大值
4) 后将剩余 n-1 个元素重新构造成一个堆,这样会得到 n 个元素的次小值。如此反复执行,便能得到一个有序序列 了。

 

以看到在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了.

练习:

要求:给你一个数组{4,6,8,5,9} , 要求使用堆排序法,将数组升序排序

步骤一构造初始堆。将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。
原始的数组[4, 6, 8, 5, 9]
1) .假设给定无序序列结构如下

2) .此时我们从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点arr.length/2-1=5/2-1=1,也就是下面的6 结点),从左至右,从下至上进行调整。

3) .找到第二个非叶节点4,由于[4,9,8]中9 元素最大,4 和9 交换。

此时,我们就将一个无序序列构造成了一个大顶堆。
步骤二 将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。
1) .将堆顶元素9 和末尾元素4 进行交换


2) .重新调整结构,使其继续满足堆定义

3) .再将堆顶元素8 与末尾元素5 进行交换,得到第二大元素8.

4) 后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序

基本思路:
1).将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;
2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,
直到整个序列有序。

代码实现:

package com.liu.sort;

import java.util.Arrays;

public class HeapSort {
	public static void main(String[] args) {
		 int arr[] = {4, 6, 8, 5, 9};
		 heapsort(arr);
		 System.out.println(Arrays.toString(arr));
	}

	public static void heapsort(int arr[]) {
		int temp=0;
		System.out.println("堆排序");
//		//分步完成
//		adjustHeap(arr, 1, arr.length);
//		System.out.println("第一次" + Arrays.toString(arr)); // 4, 9, 8, 5, 6
//		
//		adjustHeap(arr, 0, arr.length);
//		System.out.println("第2次" + Arrays.toString(arr)); // 9,6,8,5,4
		//完成我们最终代码
		//将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
		for(int i=arr.length/2-1;i>=0;i--) {
			adjustHeap(arr, i, arr.length);
		}
		/*
		 * 2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
  			3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
		 */
		for(int j = arr.length-1;j >0; j--) {
			//交换
			temp = arr[j];
			arr[j] = arr[0];
			arr[0] = temp;
			adjustHeap(arr, 0, j); 
		}
	}
	//将一个数组(二叉树), 调整成一个大顶堆
		/**
		 * 功能: 完成 将 以 i 对应的非叶子结点的树调整成大顶堆
		 * 举例  int arr[] = {4, 6, 8, 5, 9}; => i = 1 => adjustHeap => 得到 {4, 9, 8, 5, 6}
		 * 如果我们再次调用  adjustHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9,6,8,5, 4}
		 * @param arr 待调整的数组
		 * @param i 表示非叶子结点在数组中索引
		 * @param lenght 表示对多少个元素继续调整, length 是在逐渐的减少
		 */
	public static void adjustHeap(int arr[], int i, int length) {
		int temp=arr[i];//先取出当前元素的值,保存在临时变量
		//开始调整
		//说明
		//1. k = i * 2 + 1 k 是 i结点的左子结点
		for(int k=2*i+1;k<length;k=k*2+1) {
			if(k+1<length&&arr[k]<=arr[k+1]) { //说明左子结点的值小于右子结点的值
				k++;// k 指向右子结点
			}
			if(arr[k]>temp) {//如果子结点大于父结点
				arr[i]=arr[k]; //把较大的值赋给当前结点
				i=k;//!!! i 指向 k,继续循环比较
			}else {
				break;
			}
		}
		//当for 循环结束后,我们已经将以i 为父结点的树的最大值,放在了 最顶(局部)
			arr[i] = temp;//将temp值放到调整后的位置
	}
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只猪的思考

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值