70-爬楼梯
题目链接:LeetCode-70简单
class Solution {
public:
int climbStairs(int n) {
vector<int> dp(n + 1, 0);
dp[0] = 1;
for (int i = 1; i <= n; i++) { // 遍历背包
for (int j = 1; j <= 2; j++) { // 遍历物品
if (i - j >= 0) dp[i] += dp[i - j];
}
}
return dp[n];
}
};
322-零钱兑换
题目链接:LeetCode-322中等
思考
凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])
所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。
递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
vector<int> dp(amount+1,INT_MAX);
dp[0]=0;
for(int i=0;i<coins.size();i++){ //物品
for(int j=coins[i];j<=amount;j++){//背包
if(dp[j-coins[i]] != INT_MAX){
dp[j]=min(dp[j-coins[i]]+1,dp[j]);
}
}
}
if(dp[amount]==INT_MAX) return -1;
return dp[amount];
}
};
279-完全平方数
题目链接:LeetCode-279中等
思考
dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。
此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);
class Solution {
public:
int numSquares(int n) {
vector<int> dp(n + 1, INT_MAX);
dp[0] = 0;
for (int i = 1; i * i <= n; i++) { // 遍历物品
for (int j = i * i; j <= n; j++) { // 遍历背包
dp[j] = min(dp[j - i * i] + 1, dp[j]);
}
}
return dp[n];
}
};