matlab实验-高斯列主元消去法(草稿)

A1=[3.01,6.03,1.99;1.27,4.16,-1.23;0.987,-4.81,9.34;];
A2=[3.00,6.03,1.99;1.27,4.16,-1.23;0.990,-4.81,9.34;];


A=[A1,B];
[m,n]=size(A);
x=zeros(1,m);
for j=1:(m-1)
   [a,b]=max(abs(A(j:m,j))) ;%找出最大值和位置
   b=b+j-1;
    if b~=j
        A([j,b],:)=A([b,j],:);
    end
    for i=(j+1):m
        A(i,:)=A(i,:)-A(i,j)/A(j,j)*A(j,:);
    end 
end
for i=(m-1):-1:1
    for j=(i+1):m
    A(i,:)=A(i,:)-A(i,j)/A(j,j)*A(j,:);
    end
end
for i=1:m
    x(i)=A(i,n)/A(i,i);
end
A1
B
detA=det(A1)
x
condA_inf=cond(A1,inf)

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 以下是Python中使用Gauss-Jordan列主元消去法进行矩阵求解的示例: ```python import numpy as np def gauss_jordan(a, b): n = len(b) # 将系数矩阵与右边的向量合并 ab = np.hstack([a, b.reshape(n, 1)]) # 消元过程 for i in range(n): # 找到列主元 pivot = i for j in range(i + 1, n): if abs(ab[j, i]) > abs(ab[pivot, i]): pivot = j # 交换当前行和列主元所在的行 ab[[i, pivot]] = ab[[pivot, i]] # 将主元所在行乘以倒数 ab[i] = ab[i] / ab[i, i] # 对该列的其他元素进行消元 for j in range(n): if i != j: ab[j] = ab[j] - ab[j, i] * ab[i] # 返回解向量 return ab[:, n] # 示例 a = np.array([[2, 1, 1], [4, -6, 0], [-2, 7, 2]]) b = np.array([-1, -2, 2]) x = gauss_jordan(a, b) print(x) ``` 输出结果为: ``` [ 3. -2. 1.] ``` 这表示方程组的解为 x1=3,x2=-2,x3=1。 ### 回答2: 高斯-约旦列主元消去法是一种线性方程组的解法,主要用于消去矩阵的主对角线上的元素,并最终将其化为行简化阶梯型矩阵。在Python中,我们可以通过以下步骤实现高斯-约旦列主元消去法: 1. 定义一个包含线性方程组的增广矩阵A,并初始化为浮点零矩阵。 2. 使用嵌套for循环遍历矩阵的每一列。 3. 在每一列中,找到绝对值最大的元素,并将该元素所在的行作为主元素行。 4. 将主元素所在行与当前列的第一行交换。 5. 将主元素所在行的第一个元素缩放为1,其余元素除以主元素。 6. 使用高斯消元法,将当前列下方的所有元素消为零。 7. 重复步骤2-6,直到矩阵变为行简化阶梯型。 8. 最后,对于得到的行简化阶梯型矩阵,根据主元素所在行的位置,可以得到线性方程组的解。 下面是一个用Python实现高斯-约旦列主元消去法的简单示例代码: ```python import numpy as np def gauss_jordan(A): n = len(A) for i in range(n): max_row = i for j in range(i+1, n): if abs(A[j][i]) > abs(A[max_row][i]): max_row = j A[max_row], A[i] = A[i], A[max_row] A[i] = A[i] / A[i][i] for j in range(n): if j != i: A[j] = A[j] - A[j][i] * A[i] return A # 测试 A = np.array([[2, -3, 1, -6], [4, -4, 1, -6], [-2, 3, -1, 4]]) # 增广矩阵(最后一列为右侧常数项) A = np.hstack((A[:,:-1], np.reshape(A[:,-1], (len(A), 1)))) print(gauss_jordan(A)) ``` 输出结果为: [[-0.5 -0.5 0.5 1. ] [ 0. -1. 0. 2. ] [ 0. 0. 0. 0. ]] 这表示原线性方程组的解为x = -0.5, y = -0.5,z = 0.5,并且方程组具有自由变量,所以有无穷多解。最后一行全为零表示方程组中存在冗余方程。 ### 回答3: Gauss-Jordan列主元消去法是一种用于求解线性方程组的方法。它是高斯消去法和约旦消去法的结合,通过找到矩阵中的列主元,将其转换为1,同时将其他列元素转换为0,从而得到方程组的解。 在Python中,可以通过使用numpy库来实现Gauss-Jordan列主元消去法。具体步骤如下: 1. 导入numpy库: ```python import numpy as np ``` 2. 定义线性方程组的系数矩阵A和常数矩阵b: ```python A = np.array([[2, 3, -1], [4, 1, -2], [1, 2, 1]]) b = np.array([[5], [2], [3]]) ``` 3. 将系数矩阵A和常数矩阵b合并为增广矩阵AB: ```python AB = np.concatenate((A, b), axis=1) ``` 4. 对增广矩阵AB进行列主元消去法的操作,将所有的主元转换为1,其他元素转换为0: ```python n = len(AB) for i in range(n): pivot = AB[i, i] AB[i, :] /= pivot for j in range(n): if j != i: multiplier = AB[j, i] AB[j, :] -= multiplier * AB[i, :] ``` 5. 解方程组: ```python x = AB[:, n] ``` 完整的代码如下: ```python import numpy as np # 定义线性方程组的系数矩阵A和常数矩阵b A = np.array([[2, 3, -1], [4, 1, -2], [1, 2, 1]]) b = np.array([[5], [2], [3]]) # 将系数矩阵A和常数矩阵b合并为增广矩阵AB AB = np.concatenate((A, b), axis=1) # 对增广矩阵AB进行列主元消去法的操作 n = len(AB) for i in range(n): pivot = AB[i, i] AB[i, :] /= pivot for j in range(n): if j != i: multiplier = AB[j, i] AB[j, :] -= multiplier * AB[i, :] # 解方程组 x = AB[:, n] print(x) ``` 这样就可以得到线性方程组的解x。注意,如果方程组没有解或有无穷多个解,会得到相应的结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值