线性代数作业

这篇博客介绍了矩阵的基本操作,包括矩阵的转置、逆矩阵的计算方法,并展示了如何使用numpy库进行这些操作。同时,还探讨了矩阵行列式的求解,并给出了实例。此外,还涉及到矩阵的加减运算和乘法,以及对角矩阵的创建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np

"""
    原矩阵:
    
    A = [[1, 6, 3, 5], [3, 6, 4, 1], [8, 4, 5, 6], [3, 2, 5, 1]]
    Y = [[9, 8, 7, 6], [3, 4, 6, 1], [1, 1, 1, 1], [2, 3, 4, 5]]
"""
A = [[1, 6, 3, 5], [3, 6, 4, 1], [8, 4, 5, 6], [3, 2, 5, 1]]

"""
    矩阵转置
"""
print("矩阵转置")
B1 = []
for i in range(len(A[0])):  # len(A[0])矩阵列数
    temp = []
    for j in range(len(A)):  # len(A)矩阵行数
        temp.append(A[j][i])
    B1.append(temp)
print(B1)

# ------------------------------

"""
    逆矩阵
"""
print("逆矩阵")
A1 = np.array(A)
B2 = np.linalg.inv(A1)  # 矩阵的逆
print(B2)

# ------------------------------

"""
    矩阵行列式的值
"""
print("矩阵行列式的值")
arr = np.array(A)
print(np.linalg.det(arr))  # det求行列式的值

Y = [[9, 8, 7, 6], [3, 4, 6, 1], [1, 1, 1, 1], [2, 3, 4, 5]]

# ------------------------------

"""
    比较A和B的大小
"""
print("比较A和B的大小")
# 不会
# ------------------------------

"""
    求A*B的结果
"""
print("求A*B的结果")
a = np.array(A)
y = np.array(Y)
print(a * Y)

# ------------------------------

"""
    求B*5+A*3的结果
"""
print("求B*5+A*3的结果")
print(Y * np.array(5) + A * np.array(3))

# ------------------------------

"""
    4*4对角阵【1,2,3,4】
"""
print("4*4对角阵【1,2,3,4】")
Q = np.diag([1, 2, 3, 4])
print(Q)

# ------------------------------

"""
    点乘结果
"""
print("点乘结果")
print(A * Q)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

~RD XIAO Du

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值