一、思想:分治思想
二、步骤:
(快速排序)
1.确定分界点:通常取中间值q[l+r>>1](这种表示方法是采用的二进制表示法,最左边下标的二进制加上最右边下标的二进制后右移一位得到中间数的下标,保证该下标不会出现小数情况)
2.(重点)调整区间:将小于分界点和大于分界点的数分别放在分界点的两边,注意这里分界点不一定在中间,可能会在任何位置。
3.循环调整左右两个区间,直到整体有序。
(归并排序)
1.确定分界点:直接取数组中间的元素作为分界点:mid = l + r >> 1.
2.递归排序左右两个序列:注意此时左右两个序列是分别有序的,而不是整体有序!!
3.(重点)进行归并:将左右序列合二为一,需要一个新数组进行合并,参考合并两个有序链表的算法。
三、模板
void quick_sort(int q[], int l, int r)
{
if(l >= r) return; //判断左下标是否大于右下标,是则错误退出
int x = q[l + r >> 1]; i = l - 1; j = r + 1; //设定两个指针i和j分别指向数组的左右边界
while( i < j )
{
do i ++; while( q[i] < x ); //先移动指针再进行比较:当q[i]小于分界点时继续移动
do j --; while( q[j] > x ); //先移动指针再进行比较:当q[j]大于分界点时继续移动
if( i < j ) swap( q[i], q[j] );
}
quick_sort(q, l, j), quick_sort(q, j+1, r); //递归进行处理左右两边的序列
}
void merge_sort(int q[], int l, int r)
{
if (l >= r) return; //区间内无元素则返回
int mid = l + r >> 1; // 确定分界点
merge_sort(q, l, mid); // 递归处理两边的序列
merge_sort(q, mid + 1, r);
int k = 0; //k表示辅助数组tmp内有多少个数
i = l; j = mid + 1;
while (i <= mid && j <= r) //判断左右两边的序列是否为空
if (q[i] <= q[j]) tmp[k ++ ] = q[i ++];
else tmp[k ++] = q[j ++]; //左半边和右半边的数哪个小就往tmp中放哪个数
while (i <= mid) tmp[k ++ ] = q[i ++ ]; //左半边放完了就接上右半边
while (j <= r) tmp[k ++ ] = q[j ++ ]; //右半边放完了就接上左半边
for (i = l, j = 0; i <= r, i ++, j ++ ) q[i] = tmp[j]; //最后把排好序的辅助序列放回原序列
}