统计学习方法第十一章作业:随机条件场—概率计算问题、IIS/GD学习算法、维特比预测算法 代码实现

本文详细介绍了随机条件场的相关算法,包括概率计算问题、IIS/GD优化学习算法及维特比预测算法的实现。作者在研究过程中遇到挑战,最终完成的代码可能存在一些小问题,可供学习参考。
摘要由CSDN通过智能技术生成

随机条件场—概率计算问题、IIS/GD学习算法、维特比预测算法

这一章的算法不是很好写,整整研究了好几天,代码还是有点小问题,仅供参考。
用的是书上定义的特征函数。

import numpy as np
class CRF:
    def __init__(self,y=None,x=None,y_num=None,x_num=None,N=None):
        self.y = y
        self.x = x
        self.y_num = y_num
        self.x_num = x_num
        self.N = N
        self.get_feature()
        self.build_Marix(self.x[0])

    def get_feature(self):
        self.ti = [lambda y_1, y, x, i: 1 if i == 2 and y_1 == 1 and y == 2 else 0,
              lambda y_1, y, x, i: 1 if i == 3 and y_1 == 1 and y == 2 else 0,
              lambda y_1, y, x, i: 1 if i == 2 and y_1 == 1 and y == 1 else 0,
              lambda y_1, y, x, i: 1 if i == 3 and y_1 == 2 and y == 1 else 0,
              lambda y_1, y, x, i: 1 if i == 2 and y_1 == 2 and y == 1 else 0,
              lambda y_1, y, x, i: 1 if i == 3 and y_1 == 2 and y == 2 else 0,
         ]
        self.w_ti = [1,1,0.6,1,1,0.2]
        self.si = [lambda y_1, y, x, i: 1 if i == 1 and y == 1 else 0,
              lambda y_1, y, x, i: 1 if i == 1 and y == 2 else 0,
              lambda y_1, y, x, i: 1 if i == 2 and y == 2 else 0,
              lambda y_1, y, x, i: 1 if i == 2 and y == 1 else 0,
              lambda y_1, y, x, i: 1 if i == 3 and y == 1 else 0,
              lambda y_1, y, x, i: 1 if i == 3 and y == 2 else 0,
         ]
        self.w_si = [1,0.5,0.5,0.8,0.8,0.5]
        self.fk = self.ti+self.si
        self.wk = self.w_ti+self.w_si

    def build_Marix(self,x):
        self.Marix = np.zeros((self.N+1,self.y_num,self.y_num))
        for i in range(self.N+1):
            for n in range(self.y_num):
                if i == self.N:
                    self.Marix[i][:,0] = 1
                    break
                for m in range(self.y_num):
                    for k in range(len(self.fk)):
                        if i == 0:
                            if n==0:
                                self.Marix[i][0][m] += self.wk[k] * (self.fk[k](0,m+1,x[i],i+
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值