力扣日记:【回溯算法篇】78. 子集
日期:2023.1.30
参考:代码随想录、力扣
78. 子集
题目描述
难度:中等
给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。
解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。
示例 1:
输入:nums = [1,2,3]
输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]
示例 2:
输入:nums = [0]
输出:[[],[0]]
提示:
- 1 <= nums.length <= 10
- -10 <= nums[i] <= 10
- nums 中的所有元素 互不相同
题解
class Solution {
public:
vector<int> path;
vector<vector<int>> results;
vector<vector<int>> subsets(vector<int>& nums) {
backtracking(nums, 0);
return results;
}
void backtracking(vector<int>& nums, int startindex) {
// 不需要终止条件
results.push_back(path);
// for
for (int i = startindex; i < nums.size(); i++) {
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
}
};
复杂度
- 时间复杂度: O(n * 2^n)
- 空间复杂度: O(n)
疑问:时间复杂度如何计算:对于一个数,与其他n个数(包括自己)可能组合也可能不组合,则有2^n种情况,有n个数,则有n*2^n的时间复杂度(能否这样理解???)
思路总结
- 子集问题与组合问题(77.组合)相当类似,区别在于,子集是收集树形结构中树的所有节点的结果。而组合问题、分割问题是收集树形结构中叶子节点的结果。
- 由于是收集树的所有节点,所以不需要终止条件,而是每一次进入递归函数,都把
path
放入results
中。 - 至于递归是如何终止的,则是靠for循环每次递归都令
startindex = i + 1
使得循环最终能结束(这里也需要startindex
,因为是从一个集合中连续取值) results.push_back(path)
也能放在每次path.push_back(nums[i])
之后,但这时就需要提前把空子集{}
放入results
中。- 树状结构示意图: