Q1:OFDM的频谱是什么样子?到底是单频信号的组合(频域上为一个个脉冲)还是像教科书上显示的多个sinc函数相叠加?到底是怎么从我以为的冲激函数变成了Sa函数的?
(or
or
?)
(注:第一个是幅度谱,实际上,若用PSK调制OFDM信号,相位谱才是搭载符号信息的)
A1:首先来看对第一张图和第二张图的理解。
三角函数的频谱是一个冲激函数。但是发送的信息实际上是限定范围内的一小段三角函数,它的频谱也就不是冲激了。时域上子载波(无限长三角函数)和每比特的原始信息(矩形波)相乘(可看作给三角函数加窗,将信号限制在0~T时间段内)在频域上就是将一个sinc函数(时间窗的频谱)搬移(卷积)到中心在三角函数频率的位置。
那为什么会出现第二、三张图之间的差别呢?
这是因为基带信号在传输前一般会通过脉冲成型滤波器(作用在频域)。频域里很多Sa函数衰减都很慢,产生很大的带外功率,造成邻带干扰。为了使带外衰减更快,可以采用升余弦窗而不是矩形窗。当使用升余弦滚降滤波器后,图二就变成了图三,这样能有效抑制带外信号,在保证本路信号没有码间串扰的情况下,既能最大限度的利用带宽,又能减少子载波间的各路信号的相互干扰。
(使用升余弦会引来了新的问题:此时,时域上会产生拖尾(矩形窗完全没有),从而引起ISI和ICI的,这降低了OFDM系统对多径时延的容忍能力。)
Q2:OFDM信号长什么样子?也就是说,我想看到调制之后的符号是什么样的。
A2: 一个OFDM符号是多个已调制的OFDM子载波在时域上的叠加,其中每个子载波都可以使用不同的调制方案。在时域上将这些符号组合起来,就是OFDM信号。下面看看一个OFDM符号长什么样。
假设所有子载波均考虑QPSK调制,符号1(00)、2(01)、3(10)、4(11)分别对应四种相位(45、135、225、315)承载不同的信息。
实OFDM基带信号的发送过程:
这里的星座图映射就是一个把比特流数据调制到星座图上的点的过程,这时获得了N个复数序列(这就是复数信号的产生)。此复数序列经过串并转换器后输出的是一帧符号周期为T的N路并行码,(是一组包含相位及幅度信息的复数),这N路码分别通过不同的方案调制N路子载波,以实现频分复用。
实OFDM基带信号的表达式:
即
这里,子载波上的相位相当于常数,在证明正交性进行积分的时候可以拿出积分符号。积分里的东西是0,前面不管常数是多少最后的结果都是0。
这里用exp(jwt)与上面得到的复数相乘,得到的结果就开始包含了关于波形的信息(exp(jwt)其实就是三角函数cos和sin),也就是在这里使用IFFT提高运算效率。得到输出的形式如acos+bjsin,只不过由于数字系统,cos和sin都变成了一个个的点(DFT里w就是在单位圆上的等间隔采样,也就是0~2Π内),也就是一组数,所以实际结果就是a+bj的复数形式,a和b包含了波形信息,这就可以直接通过电平转换为波形,a和b分别转换为两路波形,叠加在一起就是最终发送出去的波形。
需要注意的是,IFFT操作仍然属于基带处理,也就是说,进行完IFFT后的信号仍然是一个基带信号。要想完成发送,还需要将这个基带信号s(t) 整体调制到高频载波wc(这和子载波是两个东西)上。为了减少频谱占用(下面给出的结论),在时域内需要将实数信号变成解析信号(这是复数信号)。所以,实际上我们会把乘法器结果分为实部和虚部两部分,分别调制到I路和Q路两路正交的高频载波上:
所以此时OFDM信号的时序图可以表示为:
这里有一个结论:同时调制实部虚部的好处是带宽减为原来的一半。下面以一个具体的例子说明。
假设要传输的串行比特流是:0 0 0 1 1 1 1 0 ,然后根据QPSK的符号映射关系表(见链接:qpsk的映射过程_数字调制技术:如何优雅的学习QPSK,IQ调制与星座图?_易易小燕的博客-CSDN博客和QPSK映射关系与差分编码/8PSK_qpsk和8psk_肥龙在学的博客-CSDN博客),我们可以得到I1=1,I2=1,I3=-1,I4=-1,Q1=1,Q2=-1,Q3=1,Q4=-1。假设四个子载波分别为:
子载波1:cos(2πt)和sin(2πt),即s1 = I1*cos(2πt) - Q1*sin(2πt)
子载波2:cos(2π2t)和sin(2π2t),即s2 = I2*cos(2π2t) - Q2*sin(2π2t)
子载波3:cos(2π3t)和sin(2π3t),即s3 = I3*cos(2π3t) - Q3*sin(2π3t)
子载波4:cos(2π4t)和sin(2π4t),即s4 = I4*cos(2π4t) - Q4*sin(2π4t)
将四路子载波叠加起来就得到了一个OFDM符号,这是OFDM系统中最基本的传输单位。
在这个例子里面,原本8个串行比特是一秒传完的。但是在比特流在经过QPSK映射之后,就变成一秒内传4个QPSK符号了(有两路)。在经过串并变换后,每秒只能传输1个符号了(有4个子载波)。这里蕴含的一个等量关系是:在一个OFDM 符号周期T内,用N个子载波各自发送一个信号F(k)(k∈[1,N]),等效于直接在时域上连续发送fn(n∈[1,N])N个信号,每个信号持续T/N的时长。
为什么我们要额外添加这种在单载波上降低传输速率的串并转换呢?因为在多径延时不变的情况下,符号速率越大,多径效应导致的ISI就越强烈。串并转换通过降低符号速率来减小ISI,当每个子信道上的信号带宽小于信道的相关带宽时,每个子信道均可视为平坦性衰落。
Q3:OFDM信号属于时域信号还是频域信号?
A3:频域信号。理由如下:
(1)OFDM信号是在频域生成的,多个并行的数据流分别位于频域的不同点上,信号的调制解调也都是在频域进行的。
(2)接收端对OFDM符号的判决是在频域进行的。接收到信道中的信号后,并不是通过简单的带通滤波器来分隔子载波,而是通过FFT模块将信号恢复到频域解调。
Q4:引入了循环前缀后,OFDM符号时长从原本的基波周期T扩展到:T+循环前缀时间Tcp。这不就代表OFDM各个子载波之间好不容易选择的互相正交频率又被改变了?不再正交了?
A4:是的,加入CP后OFDM符号的频谱不再正交(即:不存在某个频率,在这个频率上有且仅有某个子载波的功率为0)。加上CP之后,在真正传输到信道之前,子载波在原本的码元周期T内是正交的;加上CP后,当OFDM符号真正在信道上传输的时候,子载波是不正交的。
解决方法就是:在接收到OFDM符号之后,首先去掉CP。这样一来,OFDM符号的所有子载波就又重新回到了正交状态。
Q5:添加循环前缀后,解决了不同子载波间的正交性问题。那么同一子载波由于多径导致的干扰是否解决了呢?在接收端仍然能正确判决信号吗?
A5:能正确判决,基于的原理是:“时延越小的径对应的距离越短、对应的信号的强度越强;相反,时延越大对应的距离就越大、对应的信号强度越弱。”
通过不同的路径到达的相同子载波之间应该如何区分呢?答案是:信道估计(频域均衡),目的是算出不同路径的时延,知道了这个就能区分单个子载波是如何叠加的了。由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。有时候,如果ISI的影响较弱(比如CP完全消除了ISI时),接收端甚至不需要安装均衡器。
Q6:Δf表示子载波间隔,为什么它的倒数是OFDM符号周期?怎么联系上的?
A6:Δf既是子载波的基波频率(第n个子载波的频率都是其整数倍),这是频域上的概念;也是每个子载波上待发信号的持续时间(如:矩形波的宽度),这是时域上的概念。这决定了信号频谱的主瓣宽度以及旁瓣为0的位置。所以,OFDM系统中一旦选定了子载波间隔,时域及频域上的正交性就都顺理成章地联系起来了。
换一种想法,OFDM符号是所有子载波在时域上的叠加,所有子载波之间均相差Δf。对于第一个子载波,其频率就是Δf;而第一个子载波的周期(在所有子载波中最大)也是该OFDM符号的周期。
Q7:在OFDM中,IFFT的作用是进行信号分析处理吗?如果不是,那到底是在做什么?
A7:首先要明确,OFDM技术中的IFFT与信号分析处理中的傅里叶变换有很大区别。在OFDM中,基波频率是固定的,无论我们输入什么样的数字信号,基波的频率都不会改变。在信号分析与处理中,傅里叶变换得到的基波频率与信号有关,不同信号的基波频率是可以不同的。
OFDM中的IFFT算法可以看作一个多参数调制器/波形发生器:输入多个参数后,通过IFFT算法得到OFDM符号对应的数值,生成OFDM符号,从而实现多路数据的组合发送。这个过程中,大量窄带子载波频域信号变成了时域信号。
Q8:OFDM和OFDMA是一个东西吗?
A8:OFDM (Orthogonal Frequency Division Multiplexing)是正交频分复用技术,OFDMA (Orthogonal Frequency Division Multiple Access)是正交频分多址接入技术。我们首先来看这里的“多路复用技术”和“多址技术”有什么区别:
(1)多路复用指在一条链路传输多路独立信号而互不干扰。此时,用户对资源共享的需求是固定的(至多缓慢变化),所以资源会预先分配给各用户。
(2)多址接入指多个用户共享信道。此时,可以由用户在远端提出对网络资源的需求,将网络资源进行动态分配。
OFDMA是在利用OFDM对信道进行子载波化后,在部分子载波上加载传输数据的传输技术。它将传输带宽划分成正交的、互不重叠的一系列子载波集(每个OFDM符号在用户间实现正交分配)。通过自适应地改变分配给每个用户的子载波数,实现了带宽资源的动态分配。在LTE中,下行使用OFDMA技术,上行使用SC-FDMA。
Q9:OFDM是如何对抗频率选择性衰落的?
A9:频率选择性衰落发生在当信号的带宽大于信道相干带宽(由传输环境给定)时。
在OFDM系统中,频域被划分为多个正交子载波,子载波之间的频率间隔为1/T(T表示OFDM符号周期),每个子载波传输一段时域信号。若人为将此子载波间隔(也就是单子载波带宽)设置小一点(小于多径信道的相干带宽),一个子载波内的衰落就是平坦的,所以就越可以抵抗频率选择性衰落。当然,当总信号带宽一定时,设置的子载波数目越多,则间隔也会越小。
当信道出现频率选择性衰落时,它只针对特定一小部分(频带凹陷处)的频率范围,子载波数很多的情况下。所以,我们可以通过合理的子载波分配方案(比如减少这部分子载波的功率,把功率分配给信道质量好的那部分子载波)(或者将衰落特性不同的子载波分配给同一用户,以获得频率分集增益)最终达到较好的传输效果,从而有效克服频率选择性衰落。
Q10:如何理解OFDM可以使频带利用率达到最大值?
A10:频带利用率 = 码元速率1/T与使用带宽B的比值。
理想低通信道频带利用率为2Baud/Hz(往往考虑的是实数信号),理想带通信道频带利用率在为1Baud/Hz(传实数信号时)或者2Baud/Hz(传复数信号时,因为正负频率都独立携带信号)。实际情况下,由于实际带宽B要大于奈奎斯特带宽W,所以系统频带利用率会低于理想情况。
OFDM的子载波间隔最低能达到奈奎斯特带宽(此时也即子载波数量最大),也就是说(在不考虑最旁边的两个子载波情况下),OFDM达到了理想信道的频带利用率。