对于计算机本科的毕设而言,能实现算法已经可以满足毕业要求了。但对于计算机硕士的毕设,仅实现算法是完全不够的,还得有两三个创新点才能满足毕业要求。那么如何去设计这些创新点呢?作者发表过多篇SCI文章和中文核心文章,近三年指导过多名研究生顺利完成毕设,下面这些方法均是通过多次实践验证的,请放心参考,靠谱管用!在python编程、机器学习、深度学习算法上有疑问、问题的,也欢迎和我沟通探讨。
按创新的难度由低到高,把创新分为下面5个等级
1级创新:应用式创新
应用式创新指的把机器学习、深度学习算法应用在一个新的领域上面,比如把机器学习应用在生物、医学等领域,这种创新对于非计算机专业的学生比较适合,非计算机专业的学生在写论文的时候能结合机器学习、深度学习这些算法,文章的技术含量和创新点完全可以满足毕业要求了。但对于计算机专业的学生而言,这种创新度太低,不能满足毕业要求。
2级创新:组合式创新
多个算法组合起来,形成一套算法,能够更好地解决某个问题,或者同时解决多个问题。常常使用。A领域的方法去解决B领域的问题,或者A+B方法去解决一个C问题等等方式。这种创新一般也需要提供大量实验去验证。这种往往也很难发表高水平的论文。
3级创新:提出一个改进方法
在前人的研究问题、前人的研究基础之上,自己再提出一些改进的方案,使得方法在性能指标上有较大的改进,这种论文需要做大量实验,通过分析和对比说明自己方法的有效性。
4级创新:提出一个新的方法
这种创新虽然研究问题是一个前人研究过的问题,但是自己考虑到了一些特殊条件或者约束,并且自己能够提出一种新的方法去解决这个问题,那么也能够发不错的学术论文。
5级创新:做一个新问题
找到一个新问题,别人没考虑过,你发现了这个新问题,并考虑到了新问题的特点,给出一种新的、有效的解决方案。这种创新比较难想,但一旦想到往往就是一个很大的突破,往往能针对这个新问题,发表一系列很好的学术论文。
综上所述,毕业论文写作需要掌握一定的方法技巧,很多时候会出现相互区别、又相互联系;既有相似处,又有相异点的情况。重点是你的观点提炼一定要基于研究基本思路、目标、内容、方法、技术和成果的完整性。
创作不易,觉得读完有收获的可以点下收藏或喜欢,或者给一句鼓励的评论。感恩每一位认真读完的同学,祝大家都能顺顺利利毕业,早日为社会做贡献。
更多博主文章请查看:python机器学习、深度学习建模