1. 研究背景与意义
随着智能交通技术的迅速发展,车辆的自动化辅助驾驶成为提升交通安全和效率的重要手段。车距和速度的准确估计是实现自动驾驶、智能巡航控制和防碰撞预警的基础。传统的车距测量多依赖激光雷达(LiDAR)、毫米波雷达等硬件设备,成本较高且环境依赖性强。
近年来,基于计算机视觉的车辆检测与动态信息提取方法,因其成本低廉、易于部署受到广泛关注。特别是深度学习目标检测算法如YOLO系列,凭借高效准确的性能,为车距和速度估计提供了可行的技术基础。
本项目基于最新的YOLOv8目标检测算法,结合实时摄像头数据流,设计实现了一个车距与速度估计系统,并配套开发了用户界面(UI),实现数据的可视化展示,方便监控和进一步分析。
2. 技术方案概述
本系统采用YOLOv8对车载摄像头采集的视频帧进行实时车辆检测,获取车辆的边界框信息;基于车辆边界框位置的变化,结合相机标定参数,估算车辆之间的相对距离和速度。系统集成了Python编写的UI界面,实时展示检测结果及估计的车距和速度数据。
主要技术组成包括:
- YOLOv8目标检测模型
- 车辆距离估计算法(基于视觉几何关系)
- 车辆速度估计(基于边界框时序变化&#x