1.直觉主义逻辑常采用三值逻辑来处理命题的真值,包括以下三个真值:
- 真(True):表示命题是确定为真的。
- 假(False):表示命题是确定为假的。
- 未知(Unknown):表示命题的真值尚不确定,既不能被证明为真也不能被证明为假。
2.四种简单模态判断分别是:
同素材的可能判断、同素材的或然判断、同素材的必然判断、同素材的偶然判断。
3.LTL的元性质:
1.封闭性 2.完备性 3.决定性 4.可判定性
4.无类型λ演算和带类型λ演算的区别包括:
类型系统的存在:这是无类型入演算和带类型入演算之间的主要区别,无类型入演算中,变量和函数没有明确的类型标注,它们可以接受和返回任何类型的值,而在带类型入演算中,每个变量和函数都有一个明确的类型,这些类型在定义和使用时必须保持一致,从而保证了程序的类型安全
错误处理方式的差异:由于无类型入演算没有类型系统,因此无法在运行前进行类型检查,只能在运行时通过计算过程来发现可能的类型错误,而带类型入演算则可以在编译时进行类型检查,从而提前发现并避免类型错误。
适用场景的不同:无类型入演算由于其灵活性和简单性,常用于理论研究和教学,帮助人们理解函数式编程的核心概念,而带类型入演算由于其类型安全的特性,更适用于实际编程应用,尤其是在需要保证程序正确性和稳定性的场景中
5.写出P类问题和NP类问题的定义以及它们之间的关系
定义:P表示确定的TM在多项式时间(步数)内可判定的语言类。这些语言对应的问题称为是P类问题,这种语言称为多项式可判定的。NP表示不确定的TM在多项式时间(步数)内可判定的语言类。这些语言对应的问题称为是NP类问题,也称这些问题是NP复杂的,或者NP困难的。
关系:所有的P类问题都是NP类问题的一部分,因为如果一个问题可以在多项式时间内解决,那么显然也可以在多项式时间内验证其解的正确性。因此,P ⊆ NP。目前尚不清楚P类问题是否等于NP类问题,即是否所有在多项式时间内能验证的解也能在多项式时间内找到。这是著名的P vs NP问题,是计算机科学中的一个未解难题。
6.简述图灵机的形式化定义
1.状态集合Q 2.输入字符表Σ 3.带符号表Γ 4.转移函数σ 5.初始状态q0 6.空白符B 7.终止状态集合F
7.乔姆斯基文法体系
8.Ackerman函数
特性和意义 :非原始递归:Ackermann函数是一个重要的例子,展示了超出原始递归函数的复杂性。尽管它是完全递归的,但它不是原始递归的,因为它的增长速度太快。 计算理论中的应用:Ackermann函数常用于理论计算机科学中,特别是分析算法的时间复杂度和空间复杂度。 急剧增长:函数的增长速度极快,展示了递归计算的潜力和复杂性。 Ackermann函数因其理论意义和计算特性,在计算理论和算法分析中占据了重要地位。
1.请给出下列语言的形式表示: (假设Σ={0,1})
(1)所有以0开头,以1结尾的串:{0}{0,1}*{1}
(2)所有包含子串01011的串:{0,1}* {01011} {0,1} *
(3)所有正数第10个字符是0的串:{0,1}^9{0}{0,1}*
2.请给出G的每个语法范畴代表的集合:
S→ aSa| aaSaa| aAa
A→ bA| bbbA| bB
B→ cB| cC
C→ ccC| DD
D→ dDl d
答案:
3.构造与某RE等价的DFA,写出语法分析树
4.根据给定的NFA,构造与之等价的DFA:
!终止状态第一行的输入2与终止状态第二行的输入2结果互换一下,答案有错误
5.表达式:(λy.y((λa.xa)(λa.a)))(λb.b)的归约的过程
6.极小化DFA
![
)