ERA5再分析资料下载和处理成红黑图教程

教程指导如何从ERA5获取数据,使用Python和xarray处理nc格式,包括基本读取、特定时间数据提取和图像转换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ERA5再分析资料下载和处理教程

1.下载官网:

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form

下载之前需要注册网站的账号认证
选择需要的要素时间气压等要素,注意最后下载的数据格式是grib还是nc格式
在这里插入图片描述
保存为netcdf格式
在这里插入图片描述
ERA5再分析资料的温度使用工具看到
在这里插入图片描述## python处理数据
nc数据基本信息的读取查看

ds = xr.open_dataset('xxxx.nc')  #使用xarray包打开nc数据
print(ds.variables.keys())   # 打印数据的变量信息
time_dim = ds.coords['time']  # 获取时间维度
lon = ds['longitude'].values  # 获取经度列表值
lat = ds['latitude'].values  #获取维度列表的值
data = ds.sel(time=t)   # 获取t这一特定时间的数据
data = data['t'].values   #获取温度的值

我们得到数据后将数据存储到红黑图,保证数据交互的方便,存储小
在这里插入图片描述

# # 垂直翻转数组【根据获取的数组实际旋转】
        # data = np.flipud(data)
        minValue = np.nanmin(data)
        maxValue = np.nanmax(data)
        # 用计算的最大小值来拉伸
        fix = (maxValue - minValue) / 256
        # var2Data[np.isnan(var2Data)] = 0
        # var3Data = var3Data.to_masked_array()
        # var3Data[np.isinf(var3Data)] = np.nan
        var3Data = np.nan_to_num(data, nan=0)  # 无效值转换为0
        var3Data[var3Data < minValue] = minValue
        var3Data = (var3Data - minValue) / fix
        var3Data = np.uint8(var3Data)
        ir = Image.fromarray(var3Data[:])
        ig = Image.fromarray(np.array(np.zeros(var3Data.shape), np.uint8)).convert('L')
        ib = Image.fromarray(np.array(np.zeros(var3Data.shape), np.uint8)).convert('L')
        imjpg = Image.merge('RGB', (ir, ig, ib))
        flipped_img = imjpg.transpose(method=Image.FLIP_TOP_BOTTOM)
        directory_path11 = os.path.dirname(file_path)
        directory_path = os.path.dirname(directory_path11) + '\\' + 'era5' + '\\' + element + '\\' + stime
        if not os.path.exists(directory_path):  # 如果路径不存在
            os.makedirs(directory_path)  # 则创建该目录
        pngfile = directory_path + '\\' + element + '_' + stime + '.png'
        flipped_img.save(pngfile, 'png')   #保存为png

在我们交互的同时定义相对应的json文件,方便前端的渲染

### 如何使用 ERA5 数据进行水汽分析 #### 获取 ERA5 数据 为了开展基于ERA5数据的水汽分析,获取高质量的数据源至关重要。可以从欧洲中期天气预报中心(ECMWF)官方网站下载ERA5数据[^1]。ERA5提供了全球范围内高分辨率的大气再分析资料,包括温度、湿度等多个变量。 #### 处理与预处理 一旦获得了所需时间段内的ERA5数据集,在正式进入数据分析之前通常还需要做一些准备工作: - **解码GRIB格式**:由于ERA5原始数据是以GRIB格式存储的,因此需要利用专门软件如wgrib2来读取并转换更易于操作的形式,比如NetCDF。 - **空间插值**:如果研究区域不是标准网格,则可能要对数据做进一步的空间重采样或投影变换以适应特定需求。 #### 实施具体方法 针对水汽含量这一物理量而言,可以采用如下几种常见技术手段来进行深入探讨: ##### 计算比湿 通过计算空气中的绝对湿度除以其总压强得到相对应位置处单位体积空气中所含有的水分质量比例——即所谓的“比湿”。此参数能够直观反映某一地点上空大气层结状态下的实际含水量情况。 ```python import numpy as np def calculate_specific_humidity(pressure, temperature, dew_point_temperature): """ Calculate specific humidity from pressure, temperature and dew point. Parameters: pressure (float or array-like): Pressure in hPa temperature (float or array-like): Temperature in Celsius degrees dew_point_temperature (float or array-like): Dew Point Temperature in Celsius degrees Returns: float or ndarray: Specific Humidity value(s). """ e = 6.11 * 10**(7.5*dew_point_temperature/(237.3+dew_point_temperature)) es = 6.11 * 10**(7.5*temperature/(237.3+temperature)) qvapor = 0.622*e / (pressure-e*(1-0.622)) return qvapor ``` ##### 应用 Mann-Kendall 趋势检验 对于长时间序列观测记录来说,应用非参数统计测试可以帮助识别潜在的变化模式。例如,Mann-Kendall趋势检验就是一种广泛使用的工具,可用于检测是否存在显著上升/下降的趋势[^4]。 ```python from pyhht import EMD from pymannkendall import original_test data_series = ... # Your time series data here mk_result = original_test(data_series) print(f"Trend : {mk_result.trend}") print(f"P-value :{mk_result.p} ") if mk_result.h == True: print('Reject Null Hypothesis') else: print('Fail to reject Null Hypothesis') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值