吹爆!ENVI高光谱操作(从数据下载到分类)

本文详细介绍了如何从地理空间数据云下载卫星数据,以及在ENVI软件中进行有监督和无监督分类的过程,包括界面设置、分类步骤、预览、平滑处理、结果保存和展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、数据下载

(1)选择卫星数据

 (2)选择影像条件

(3)数据浏览与下载

(4)文件

二、ENVI分类

(1)打开ENVI软件

(2)界面亮度调整

(3)分类栏

(4) 进行有监督和无监督分类选择

(5)添加类别

(6)Preview进行分类效果预览

(7)平滑操作和小区域噪声去除

(8)分类结果保存

(9)结果展示


一、数据下载

地理空间数据云

地理空间数据云 (gscloud.cn)

(1)选择卫星数据

 (2)选择影像条件

(3)数据浏览与下载

(4)文件

二、ENVI分类

(1)打开ENVI软件

File——>open打开MTL文件

(2)界面亮度调整

(3)分类栏

(4) 进行有监督和无监督分类选择

注:No Training Data选项是非监督分类方法,不需要选择分类样本。

(5)添加类别

按住Ctral 滚动鼠标进行放大缩小调至。点击每个class,到印象上进行相应波段类别的划分

(6)Preview进行分类效果预览

(7)平滑操作和小区域噪声去除

(8)分类结果保存

export files选择储存为image(栅格图像)

additional export输出分类结果的统计文件

(9)结果展示

txt文件里面保存了各个类别的面积和百分比

要去除周期性噪声,我们可以使用几种方法。首先,我们可以通过频域滤波来消除这种噪声。频域滤波是一种在频域对信号进行处理的技术。我们可以使用傅里叶变换将信号从时域转换到频域,然后通过滤波器去除频谱中的周期性噪声成分,最后再通过傅里叶反变换将信号转换回时域。这种方法可以有效地去除周期性噪声,但需要在频域上进行处理,对信号的频谱有一定的要求。 另外一种方法是使用滑动平均滤波器。滑动平均滤波器是一种对信号进行平滑处理的方法。它通过对信号的一系列连续采样值进行平均,从而减小噪声的影响。对于周期性噪声,我们可以选择合适的滑动窗口大小,使其能够覆盖噪声周期的整数倍,并通过计算窗口内的平均值来减小噪声的影响。 另外,我们还可以使用自适应滤波器来去除周期性噪声。自适应滤波器是一种能够根据信号的统计特性自动调整滤波器参数的滤波器。它能够根据输入信号的变化情况自动调整自身的滤波器系数,以最小化输出信号与期望信号之间的误差。对于周期性噪声,我们可以通过训练自适应滤波器,使其能够自动识别和去除周期性噪声的成分。 总而言之,去除周期性噪声可以使用频域滤波、滑动平均滤波器和自适应滤波器等多种方法。根据实际情况选择适当的方法,可以有效地去除周期性噪声,提高信号的质量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值