- 博客(69)
- 收藏
- 关注
原创 CondaError: Run ‘conda init‘ before ‘conda activate‘
摘要 该命令序列用于初始化conda环境并激活基础环境。首先执行conda init bash初始化bash shell中的conda环境配置,然后通过source ~/.bashrc重新加载bash配置文件使conda配置生效,最后使用conda activate base命令激活conda的基础环境。这一系列操作通常用于在Linux系统中设置conda环境,确保conda命令可用并进入默认的base环境。
2026-01-28 14:28:51
100
原创 gitlab文件上传
本文简要介绍了Git项目协作的基本流程:首先创建项目分组并添加成员,然后通过git clone克隆远程仓库。在本地操作时,需创建个人分支(git branch)、切换分支(git checkout),添加文件后依次执行git add、git commit和git push命令完成代码提交。注意操作过程中需要输入Git账号密码进行身份验证。
2026-01-23 15:33:33
344
原创 AutoTokenizer.from_pretrained()出现下载或者缓存错误OSError: We couldn‘t connect to ‘https://hf-mirror.com‘ to
步骤1:在“from huggingface_hub import hf_hub_download”前写入镜像地址。代码加载本地模型时,会优先从本地缓存(cache)0件中的路径来查找文件。步骤2:若还出现错误,可在镜像。
2026-01-14 20:43:57
35
原创 FunASR基础语音识别工具包
FunASR是一个开源的端到端语音识别工具包,提供语音识别、端点检测、标点恢复等核心功能。支持非实时和实时语音处理,包含预训练模型如Paraformer和FSMN-VAD。安装可通过pip或GitHub仓库,提供多种应用场景的代码示例,包括语音转写、实时流式识别、情感分析等。工具包集成多任务处理能力,适合开发者快速构建语音应用。
2025-08-25 17:40:35
805
2
原创 相对距离单目估计Depth-Anything-V2
摘要:Depth-Anything-V2是NeurIPS2024提出的单目深度估计基础模型,性能优于前代。开源地址包含模型下载和代码实现。环境安装需克隆仓库并安装依赖。推理脚本支持多种参数配置,包括图像路径、输出尺寸(默认518)、模型架构选择(vits/vitb/vitl/vitg)等。模型支持CUDA/MPS/CPU设备,提供灰度/彩色深度图输出选项。典型使用方式为处理单张图片或批量处理目录下图片,输出结果可保存为单独深度图或与原图拼接的对比图。项目提供了完整的推理流程和可视化功能。
2025-08-18 11:21:31
689
原创 Gradio本地访问和公共访问设置(Could not create share link. Missing file: /home/hadoop/.cache/huggingface/gradio)
本文介绍了Gradio公共访问设置问题的解决方法:1)在launch参数中添加share=True;2)若出现frpc文件缺失提示,需从HF镜像下载ApproLight/frpc_linux_amd64_v0.3文件并放入指定缓存目录;3)对下载的文件执行权限设置命令"sudo chmod +x frpc_linux_amd64_v0.3"。这些步骤可解决公共访问链接创建失败的问题。
2025-07-30 18:41:24
212
原创 2025软考
计算机网络的相关知识,包括计算机网络体系结构的网络协议、计算机网络互联技术、网络管理的基本原理和操作方法、网络安全机制和安全协议;多媒体应用系统的创作过程,报考数字音频编辑、图形的绘制、动画和视频的制作、多媒体制作工具的使用等。电子商务网站的运用、维护、和管理;软件评测师:操作系统、数据库、中间件、程序设计语言、计算机网络基础知识;IT服务规划设计、部署实施、运营管理、持续改进、监督管理、服务营销;团队建设与管理的方法和技术;系统分析师:信息系统开发所需的综合技术知识,包括硬件、软件、网络、数据库等;
2025-03-14 18:33:07
758
原创 torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 260.00 MiB. GPU 0 has a total capacity
三、修改:修改 AutoModelForCausalLM.from_pretrained()函数的内置参数,并使用命令加载模型参数、数据到多GPU上。运行命令:“1,2,3”为GPU序数。
2025-02-11 19:10:11
2171
原创 ubuntu 指定gpu运行命令
程序运行命令前添加:CUDA_VISIBLE_DEVICES=GPUid。在文件头部添加下面两行代码,“0,1,2,3”为显卡编号。
2025-02-06 20:44:40
462
原创 ImportError: cannot import name ‘Undefined‘ from ‘pydantic.fields‘
【代码】ImportError: cannot import name 'Undefined' from 'pydantic.fields'
2025-02-06 19:51:32
1543
原创 torch.distributed.DistNetworkError: The server socket has failed to listen on any local network addr
之前开的分布式训练的端口没有关闭,再次运行产生冲突。
2025-02-06 15:05:31
943
原创 HF Mirror—huggingface镜像网站下载模型
1.打开页面,在models模式下搜索预下载模型。3.找到自己想要下载的文件即可。
2025-02-06 11:10:58
2876
1
原创 RP2K:一个面向细粒度图像的大规模零售商品数据集
这是一种用于细粒度图像分类的新的大规模零售产品数据集。与以往专注于相对较少产品的数据集不同,我们收集了2000多种不同零售产品的35万张图像,这些图像直接在真实的零售商店的货架上拍摄。我们的数据集旨在推进零售对象识别的研究,该研究具有大量应用,如自动货架审计和基于图像的产品信息检索。我们的实验表明,即使是最先进的细粒度分类方法也没有优于简单的ResNet基线,这表明在细粒度零售产品分类任务上,提高分类性能的研究还有很大的潜在空间。(2)所有图像都是在自然照明的实体零售店中手动拍摄的,符合真实的应用场景。
2025-01-03 11:23:56
1181
原创 L0G1000 Linux 基础知识
2.进去开发机,编辑hello_world.py文件。4.安装环境pip install gradio。5.运行hello_world.py。1.创建开发机、选择资源。
2024-12-25 20:23:56
291
原创 通过AI模型进行暗光增强 URetinex-Net: Retinex-based Deep Unfolding Network for Low-light-Image-Enhancement
URetinex-Net是一款由深度学习驱动的低光图像增强工具,源于2022年CVPR会议的前沿研究,专为提升暗环境下的图像质量设计。通过融合经典的Retinex理论与现代的神经网络技术,本项目实现了高效、自动的亮度优化和色彩恢复。
2024-09-03 15:21:40
1507
原创 Generic family ‘sans-serif‘ not found because none of the following families were found: SimHei
到/lib/python3.9/site-packages/matplotlib/mpl-data 目录下修改matplotlibrc文件。取消注释`font.family`行,加`SimHei`到`font.sans-serif`的列表中。下载: SimHei.ttf 到conda环境下lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf。删除掉matplotlib缓存文件即可,rm -r matplotlib。
2024-08-03 14:15:03
1017
原创 ImportError: /lib/x86_64-linux-gnu/libstdc++.so.6: version `GLIBCXX_3.4.30‘ not found
再次查找libstdc++.so.*查看是否有需要的GLIBCXX_3.4.30,一般。2. 查看所有的libstdc++.so*是否有需要的GLIBCXX_3.4.30。再把找到的有GLIBCXX_3.4.30的路径进行软连接。删除原本的libstdc++.so.6。(2)若没有GLIBCXX_3.4.30。(1)若有GLIBCXX_3.4.30。1,查找libstdc++.so.*问题描述:paddle项目运行出错。最后再进行(1)的软连接设置即可。
2024-07-11 15:53:08
1229
1
原创 findfont: Generic family ‘sans-serif‘ not found because none of the ...: SimHei
python代码在使用matplotlib画图时,如果在title,xlabel,ylabel中出现了中文,则会出现字体警告,中文字符显示为方框例如代码:警告显示如下:生成图片如下:1.可以看到报错中“missing from current font” ,即默认的字体中不包含中文字符进入python虚拟环境:conda activate xxx(环境名)查看matplotlib信息命令: 2.进入字体文件夹下:cd /home/hadoop/anaconda3/envs/xxx/lib/py
2024-06-28 16:03:06
1475
1
原创 ModuleNotFoundError: No module named ‘gdal‘
conda listimport gdalfrom osgeo import gdal
2024-06-26 12:55:34
1516
原创 Landsat8卫星数据标识详解
至此,我们就可以读懂Landsat影像的命名规则:卫星传感器标识+处理级别+行列号+获取日期+处理日期+Collection 编号(01/02)+Collection Tier 类别(T1/T2/RT)
2024-06-26 09:48:07
1675
1
原创 植被覆盖度计算
2.植被覆盖度是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比,是刻画地表植被覆盖的一个重要参数,也是指示生态环境变化的重要指标之一。其中,NDVIsoil为完全是裸土或无植被覆盖区域的NDVI值,相当于NDVImin,NDVIveg则代表完全被植被所覆盖的像元的NDVI值,即纯植被像元的NDVI值,相当于NDVImax。1.归一化植被指数(NDVI):反映土地覆盖植被状况的一种遥感指标,定义为近红外通道与可见光通道反射率之差与之和的商。
2024-06-26 09:35:25
2997
1
原创 scipy.io.loadmat加载.mat文件,出现KeyError: ‘xxx‘
input_image = loadmat(r'C:\Users\admin\Downloads\Indian_Pines\SVM/aa.mat')['imggt'] #影像图。input_image = loadmat(r'C:\Users\admin\Downloads\Indian_Pines\SVM/aa.mat')['aa'] #影像图。因为loadmat函数读取出来的高光谱数据是dict格式的所以需要定位才能进行后续操作,定位通常是通过列名,所以找到正确的列名,并修改源代码,问题就能解决。
2024-06-04 17:04:26
677
1
原创 python对landsat8数据进行辐射标定和大气校正
辐射定标:辐射亮度L=DN*Gain+Bias大气校正:表观反射率ρ=π*L*D²/(ESUN*cosθ)式中,ρ为大气层顶( TOA) 表观反射率( 无量纲),π为常量( 球面度sr),L 为大气层顶进人卫星传感器的光谱辐射亮度( W*1/(m²*sr*um)),D为日地之间距离( 天文单位), ESUN为大气层顶的平均太阳光谱辐照度( W*1/(m²*sr*um))θ为太阳的天顶角。
2024-05-30 10:34:44
1745
17
原创 ModuleNotFoundError: No module named ‘osgeo‘
方法2:官网下载失败,下载地址:https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal。确保你已经安装了正确的依赖项,例如GDAL、GEOS和PROJ等。方法3:conda install gdal 成功。方法1:pip install gdal 失败。pip install osgeo显示失败。显示无osgeo模块。
2024-05-29 16:24:56
2483
原创 Error opening file a bytes-like object is required,not ‘NoneType‘
查看json文件内容,索引的路径与json文件保存的路径不同。方法:使用python脚本统一修改json文件路径。错误显示,打开的是一个无效路径的文件。
2024-04-25 18:11:50
752
原创 吹爆!ENVI高光谱操作(从数据下载到分类)
点击每个class,到印象上进行相应波段类别的划分。注:No Training Data选项是非监督分类方法,不需要选择分类样本。(1)打开ENVI软件,File——>open打开MTL文件。export files选择储存为image(栅格图像)additional export输出分类结果的统计文件。txt文件里面保存了各个类被的面积和百分比。(6)Preview进行分类效果预览。(4) 进行有监督和无监督分类选择。(7)平滑操作和小区域噪声去除。(3)数据浏览与下载。
2024-04-11 14:18:30
3023
原创 吹爆!遥感高光谱分类(Python)
一、数据集下载二、安装包Spectral Python (SPy)是一个用于处理高图像数据的纯Python模块。它具有读取、显示、操作和分类高光谱图像的功能。Spectral安装:官网链接:安装命令:三、数据处理加载数据、统计元素个数、光谱图显示、重构需要用到的类、标准化数据并存储四、模型训练五、模型推理六、踩坑记录问题描述:spectral.imshow(img)时,图像一闪而过,并且spectral好像没有类似CV2的waitKey方法。所以无法暂停。
2024-04-07 20:27:52
2099
1
原创 ImportError: cannot import name ‘tabulate‘ from partially initialized module ‘tabulate‘
类似的错误:ImportError: cannot import name 'xxx' from partially initialized module 'xxxx'在根目录中有和库重名的.py文件,更换命名就可以了。
2024-04-02 15:02:21
398
原创 CycleGAN训练教程
在输入图像和输出图像之间,使用对齐图像对的训练集。但是,对于许多任务,配对训练数据将不可用。我们提出一个学习从源翻译图像的方法域 X 到目标域 Y,在没有配对的情况下例子。我们的目标是学习映射 G : X → Y使得来自 G(X) 的图像分布与使用对抗性损失的分布 Y 无法区分。由于此映射的约束非常不足,因此我们将其与逆映射 F : Y → X ,并引入强制执行 F(G(X)) ≈ X 的循环一致性损失(反之亦然)。
2024-03-26 20:24:52
2263
原创 2024软考
嵌入式系统实施、运行、维护知识;IT服务规划设计、部署实施、运营管理、持续改进、监督管理、服务营销;计算机的组成、各主要部件的功能和性能指标;操作系统和文件管理的基本概念和基本操作;:信息系统开发所需的综合技术知识,包括硬件、软件、网络、数据库等;:信息系统工程师监理知识、方法和工具;信息系统工程监理的有关政策、法律、法规、标准和规范。:数据通信、计算机网络、计算机系统的基本原理;信息系统集成项目管理知识、方法和工具;多媒体设备、电子办公设备的安装、配置和使用;数据库应用系统的设计方法和开发过程;
2024-03-26 14:16:55
1295
原创 【深度学习】YOLOv9继续训练——断点训练方法
YOLOv9继续训练主要分为两个情况:其一、训练过程中意外中断,未完成训练预期的epoch数量;其二、训练完了,但是未收敛,在这个基础上,还想用这个权重、学习率等参数继续训练多一些轮次
2024-03-13 13:16:46
4604
9
原创 PaddleOCR表格识别运行实例
(1)PubTabNet数据集(此次训练以 PubTabNet数据集为例)'filename': PMC5755158_010_01.png, # 图像名'split': ’train‘, # 图像属于训练集还是验证集'imgid': 0, # 图像的index'html': {'structure': {'tokens': ['', '', '', ...]}, # 表格的HTML字符串'cells': [
2024-03-12 20:46:25
5576
原创 功能强大使用简单的截图/贴图工具,PixPin
截图/贴图/长截图/文字识别/标注。1.软件自带快捷键(右击PixPin查看 )3.自行配置快捷键和其他需求。
2024-03-05 19:48:42
1158
原创 RuntimeError: The size of tensor a (4) must match the size of tensor b (3) at non-singleton dimensio
更改后全为.jpg格式图像,image = Image.open(imagepath)可以直接读取图像数据。图像数据包含.png和.jpg格式,不统一,Image.open()函数无法直接读取.png格式的图片。2.先更改图片格式为.jpg再运行图片读取程序。
2024-03-05 18:40:00
1070
原创 YOLOv9图像标注和格式转换
labelimg安装(anaconda);标签文件.xml转换为.txt格式;到yolov9主目录下的./data路径下重新编写一个.yaml文件;将该文件填入到训练文件train.py中的数据参数设置--data中.
2024-02-26 21:23:58
1164
原创 YOLOv9来了!实时目标检测新SOTA
它可以用来获得完整的信息,使从头开始训练的模型比使用大数据集预训练的最先进的模型获得更好的结果,比较结果如图1所示。它可以用来获取完整的信息,从而使从头开始训练的模型能够比使用大型数据集预训练的最先进的模型获得更好的结果。图5.最先进的实时目标检测器的比较。(a) 路径聚合网络 (PAN)) [37], (b) 可逆列(修订版)[3],(c)传统的深度监督,以及(d)我们提出的可编程梯度信息(PGI)。GELAN的架构:(a)CSPNet [64],(b) ELAN [65],(c)提议的GELAN。
2024-02-26 20:27:57
1172
原创 批量解决opencv cv2.imread读取32位抠图png图像后,出现隐藏背景无法去除的问题
1.原始png含蒙版抠图信息:位深度为32位,4通道图像信息,含蒙版背景信息2.使用opencv读取保存后图像信息:位深度为24位,3通道图像信息,显示了扣除的背景。
2024-02-26 14:00:55
1397
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅