求逆手算步骤

在这里插入图片描述
inverse(3,7) = 5
inverse(5,13) = 8
inverse(1473,1562) = 351
inverse(73,127) = 87

当我们要对一个样本进行分类时,Fisher判别函数可以帮助我们找到一个最佳的分类边界。假设我们有两类样本,每个样本有两个特征,我们可以使用Fisher判别函数来确定一个最佳分类边界。 让我们来看一个的例题。假设我们有以下样本数据: 类别1: (2, 4) (3, 6) (4, 4) (5, 7) 类别2: (1, 2) (2, 3) (3, 1) (4, 3) 我们需要按照以下步骤Fisher判别函数: 步骤1: 计每个类别的均值向量 类别1的均值向量 m1: m1 = ( (2+3+4+5)/4 , (4+6+4+7)/4 ) = (3.5, 5.25) 类别2的均值向量 m2: m2 = ( (1+2+3+4)/4 , (2+3+1+3)/4 ) = (2.5, 2.25) 步骤2: 计类内散布矩阵 Sw Sw = Σi=1 to N (xi - mi) * (xi - mi)^T 其中,xi 是一个样本向量,mi 是对应类别的均值向量,N 是每个类别的样本数量。 类别1的类内散布矩阵 Sw1: Sw1 = (2-3.5, 4-5.25) * (2-3.5, 4-5.25)^T + (3-3.5, 6-5.25) * (3-3.5, 6-5.25)^T + (4-3.5, 4-5.25) * (4-3.5, 4-5.25)^T + (5-3.5, 7-5.25) * (5-3.5, 7-5.25)^T 类别2的类内散布矩阵 Sw2: Sw2 = (1-2.5, 2-2.25) * (1-2.5, 2-2.25)^T + (2-2.5, 3-2.25) * (2-2.5, 3-2.25)^T + (3-2.5, 1-2.25) * (3-2.5, 1-2.25)^T + (4-2.5, 3-2.25) * (4-2.5, 3-2.25)^T 步骤3: 计类间散布矩阵 Sb Sb = (m1 - m2) * (m1 - m2)^T Sb = (3.5-2.5, 5.25-2.25) * (3.5-2.5, 5.25-2.25)^T 步骤4: 计 Fisher判别函数的权重向量 w w = S^-1w * (m1 - m2) 其中, S^-1w 是 Sw的矩阵。 步骤5: 计 Fisher判别函数的阈值 b b = - (w^T * m1 + w^T * m2) / 2 步骤6: 使用 Fisher判别函数进行分类 对于一个新的样本 x,计 y = w^T * x + b,如果 y > 0,则将 x 分类为类别1,否则将 x 分类为类别2。 希望这个例题对你有所帮助!如果你有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值