题意:
SDUQD 旁边的滨海公园有 x 条长凳。第 i 个长凳上坐着 a_i 个人。这时候又有 y 个人将来到公园,他们将选择坐在某些公园中的长凳上,那么当这 y 个人坐下后,记k = 所有椅子上的人数的最大值,那么k可能的最大值mx和最小值mn分别是多少。
Input
第一行包含一个整数 x (1 <= x <= 100) 表示公园中长椅的数目
第二行包含一个整数 y (1 <= y <= 1000) 表示有 y 个人来到公园
接下来 x 个整数 a_i (1<=a_i<=100),表示初始时公园长椅上坐着的人数
Output
输出 mn 和 mx
Input Example
3
7
1
6
1
Output Example
6 13
样例解释
最初三张椅子的人数分别为 1 6 1
接下来来了7个人。
可能出现的情况为{1 6 8},{1,7,7},…,{8,6,1}
相对应的k分别为8,7,…,8
其中,状态{1,13,1}的k = 13,为mx
状态{4,6,5}和状态{5,6,4}的k = 6,为mn
思路:
最大值,毫无疑问,就是来的所有人坐在了原先人数最多的人的椅子上;
最小值,肯定是要平均分配的,但是要注意一点:就是,平均值和原先椅子上的最大值要做一个比较,谁大选谁;
比如样例;
再比如原先3个椅子上各坐又6个人,来了三个人,平均后为七个人,比较后选7;
代码:
#include <iostream>
#include <cstdio>
using namespace std;
int x,y,z,maxx=0,mx,mn,sum=0;
int main()
{
scanf("%d",&x);
scanf("%d",&y);
for(int i=0;i<x;i++)
{
scanf("%d",&z);
maxx=max(maxx,z); //记录原先的最大值
sum+=z; //求和
}
mx=maxx+y; //最大
sum+=y; //加来的人
int yu=sum%x; //除不尽需要+1 人不能有小数 要向上取整
mn=sum/x; //平均
if(yu) mn++;
mn=max(mn,maxx); //最小
cout<<mn<<" "<<mx;
}