思路
正常来说直接BF,遍历然后相加就好,但是题目说可能会多次调用,所以要进行一定的优化。具体的措施在于提前求出二维数组的前缀和
难点在于
- 如何求和? 假设要求sum[i][j],那么我们可以用sum[i-1][j]+sum[i][0]+sum[i][1]+······sum[i][j],也就是对应的上一行的子矩阵的和加上这一行的前缀和
- 如何利用前缀和求出对应的子矩阵?看图即可
时空复杂度
- 时间复杂度:设m行n列,最开始求和为O(mn),后面每一次调用函数时间都是O(1)
- 空间复杂度:需要额外的一个相同大小的二维数组来存储sum,所以是O(mn)
class NumMatrix { public int[][] sum; public NumMatrix(int[][] matrix) { sum = new int[matrix.length + 1][matrix[0].length + 1]; for (int i = 0; i < matrix.length; i++) { int rowSum = 0; for (int j = 0; j < matrix[i].length; j++) { rowSum += matrix[i][j]; sum[i + 1][j + 1] = sum[i][j + 1] + rowSum; } } } public int sumRegion(int row1, int col1, int row2, int col2) { return sum[row2 + 1][col2 + 1] - sum[row2 + 1][col1] - sum[row1][col2 + 1] + sum[row1][col1]; }
}
```
注意为了代码方便,我们给sum矩阵额外增加了一列,避免当row1,col1在边界,我们做差时产生越界问题
Go代码
type NumMatrix struct {
sum [][]int
}
func Constructor(matrix [][]int) NumMatrix {
sum := make([][]int, len(matrix)+1)
sum[0] = make([]int,len(matrix[0])+1)
for i := 0; i < len(matrix); i++ {
sum[i+1] = make([]int,len(matrix[0])+1)
for j := 0; j < len(matrix[0]); j++ {
sum[i+1][j+1] = sum[i+1][j] + sum[i][j+1] - sum[i][j] + matrix[i][j]
}
}
return NumMatrix{
sum: sum,
}
}
func (this *NumMatrix) SumRegion(row1 int, col1 int, row2 int, col2 int) int {
sum := this.sum
return sum[row2+1][col2+1] - sum[row2+1][col1] - sum[row1][col2+1] + sum[row1][col1]
}