剑指offer 专项突破版 13、二维子矩阵的和

题目链接

思路

正常来说直接BF,遍历然后相加就好,但是题目说可能会多次调用,所以要进行一定的优化。具体的措施在于提前求出二维数组的前缀和
难点在于

  • 如何求和? 假设要求sum[i][j],那么我们可以用sum[i-1][j]+sum[i][0]+sum[i][1]+······sum[i][j],也就是对应的上一行的子矩阵的和加上这一行的前缀和
  • 如何利用前缀和求出对应的子矩阵?看图即可
    时空复杂度
    • 时间复杂度:设m行n列,最开始求和为O(mn),后面每一次调用函数时间都是O(1)
    • 空间复杂度:需要额外的一个相同大小的二维数组来存储sum,所以是O(mn)
    class NumMatrix {
    
    public int[][] sum;
    
    public NumMatrix(int[][] matrix) {
        sum = new int[matrix.length + 1][matrix[0].length + 1];
    
        for (int i = 0; i < matrix.length; i++) {
            int rowSum = 0;
            
            for (int j = 0; j < matrix[i].length; j++) {
                rowSum += matrix[i][j];
                sum[i + 1][j + 1] = sum[i][j + 1] + rowSum;
            }
        }
    }
    
    public int sumRegion(int row1, int col1, int row2, int col2) {
        return sum[row2 + 1][col2 + 1] - sum[row2 + 1][col1] - sum[row1][col2 + 1] + sum[row1][col1];
    }
    

}
```

注意为了代码方便,我们给sum矩阵额外增加了一列,避免当row1,col1在边界,我们做差时产生越界问题
Go代码
type NumMatrix struct {
	sum [][]int
}

func Constructor(matrix [][]int) NumMatrix {
	sum := make([][]int, len(matrix)+1)
	sum[0] = make([]int,len(matrix[0])+1)
	
	for i := 0; i < len(matrix); i++ {
		sum[i+1] = make([]int,len(matrix[0])+1)
		for j := 0; j < len(matrix[0]); j++ {
			sum[i+1][j+1] = sum[i+1][j] + sum[i][j+1] - sum[i][j] + matrix[i][j]
		}
	}

	return NumMatrix{
		sum: sum,
	}
}

func (this *NumMatrix) SumRegion(row1 int, col1 int, row2 int, col2 int) int {
	sum := this.sum
	return sum[row2+1][col2+1] - sum[row2+1][col1] - sum[row1][col2+1] + sum[row1][col1]
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值