9.1 知识图谱嵌入方法的研究-知网-曾国燕-电子科技大学.2022-知识图谱嵌入的主要方法

本文概述了知识图谱中的翻译模型(Trans模型),包括TransE(基于平移的简单模型)、TransH(解决一对一问题)、TransR(不同语义空间)和TransD(改进的投影矩阵)。这些模型在处理关系表示上有各自的优缺点。
摘要由CSDN通过智能技术生成

6.翻译模型(Trans模型)

    翻译模型是把关系当作头实体和尾实体之间的翻译,包括TransE,TransH,TransR,TransD等模型。

    (1)TransE

    TransE 是基于平移的最具代表性的模型。TransE 希望实体和关系满足方程:h+r≈t。也就是说,把实体和关系都表示成向量,在三元组(h, r, t)中,关系的表示向量被看作是头尾实体间的平移向量(也称为翻译向量)。

     TransE 以关系作为实体之间的平移向量,这种方式可以有效地学习一对一的关系类型,但不能有效学习一对多、多对一、多对多这些关系。比如(姚明,搭档,王治郅)和(姚明,搭档,刘炜)两个三元组,当头实体h为“姚明”和关系r为“搭档”相同时,TransE 认为这两个尾实体“王治郅”和“刘炜”具有相同的嵌入向量,但实际情况并非如此。

    TransE 模型简单,参数较少,同时,在多个数据集上,TransE表现很好。

    (2)TransH

    针对 TransE 存在的问题,TransH 模型提出一个新的办法,即是将头、尾实体都映射到关系的平面中,然后在关系的超平面上以关系向量为平移向量找存在特定关系的头、尾实体。

    虽然 TransH 模型将实体投影到关系的超平面,但它仍然假设实体和关系是处于相同的语义空间中。

    (3)TransR

    TransR 模型认为实体和关系的语义属性不一样,那么实体和关系的嵌入空间不应该是相同的。TransR 模型的主要思想是:将实体和关系嵌入到不同的语义空间,然后在关系的嵌入空间中建立从头实体到尾实体的翻译关系。

    TransR 模型性能好,但仍然存在明显的缺点:不分头实体还是尾实体,实体空间向关系表示空间投影所用的向量是同一个。

    (4)TransD

    TransD 模型解决了 TransR模型的缺点,头实体、尾实体投影到关系语义空间所用的矩阵是两个不同的矩阵。

知识图谱嵌入的主要方法总结:包括距离模型、单层神经网络模型、能量模型、张量神经网络模型、双线性模型、翻译模型(Trans模型)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值