- 1.1
A client-server system uses a satellite network, with the satellite at a height of 40,000 km.
What is the best-case delay in response to a request?
ANS:
The request has to go up and down, and the response has to go up and down. The total
path length traversed is thus 160.000 km. The speed of light in air and vacuum is
300,000 km/sec, so the propagation delay alone is 160,000/300,000 sec or about 533 msec. - 1.2
- 1.3
Consider a router with links of 1 Gbs and a single queue at each output that can
hold 5000 packets. Suppose traffic from five flows is being sent out on one of its links.
Assume the packets in these flows are 10,000 bits long. Four of the flows (the “small flows”)
are sending 10 thousand packets per second, and the fifth one (the “large flow”) is sending
50 thousand packets per second. What is the average number of packets in the queue? Is it
likely that packets will get discarded in this situation?
The link can forward 100 Kp/s. Since the arriving packet rate is 90 Kp/s, the traffic intensity is 0.9, so
the average number of packets in the queue is .9/(1-.9)=9.
No packet losses are likely to occur in this case.
Now, suppose the large flow increases its sending rate to 80 thousand packets per second.
What is the rate at which the large flow’s packets are sent over the link?
The arriving packet rate is now 120 Kp/s, so the traffic intensity is 1.2. So only 5/6 of the arriving
traffic can be sent on the link. So the large flow is able to send 805/6 or about 66.7 Kp/s.
What is the rate at which one of the slow flow’s traffic leaves the queue?
105/6 or about 8.3 Kp/s
Suppose the router is equipped with 5 queues that can hold 1,000 packets each, and that are
serviced in round-robin order, with each flow assigned to a separate queue. In this case,
what is the output rate for the large flow?
In this case, only the large flow will experience loss, so the 20 Kp/s of excess traffic is all taken from
the large flow. Hence, its output rate is 60 Kp/s.
Approximately what is the delay experienced by packets in the large flow (those that are not
discarded)?
Since the small flows use 40% of the link’s capacity, the large flow sends a packet every 10/0.6
microseconds. This is 16.7 microseconds, so the total queueing delay is 16.7 ms. - 2.2
(5 points). A user in Chicago, connected to the internet via a 100 Mb/s (b=bits) connection
retrieves a 250 KB (B=bytes) web page from a server in London, where the page references
three images of 500 KB each. Assume that the one way propagation delay is 75 ms and that
the user’s access link is the bandwidth bottleneck for this connection.
Approximately how long does it take for the page (including images) to appear on the user’s
screen, assuming non-persistent HTTP using a single connection at a time (for this part, you
should ignore queueing delay and transmission delays at other links in the network)?
With non-persistent HTTP, there is one TCP connection for the page and one for each one of the
images. Each connection incurs a delay of 2RTT plus transmission time. Hence the total time until
the page+images shows up on the user’s screen is calculated as follows:
RTT = 2 * 75ms = 150ms
Transmission Time = (Amount of data)/(data rate) =
((250 Kbytes * 8 bits/byte) + (3 * 500 Kbytes * 8 bits/byte))/(100 x 10Mbits/sec)=
( 2 Mbits + 3 * 4 Mbits) / (100 Mbits/s)
(#RTT)(RTT) + (Transmission Time)
2*(3+1) * 150 ms + (14 Mb)/(100 Mb/s) =
8 * 150ms + (14 * 106 bits)/100 * 106 b/sec =
1200 ms + 0.14 sec =
1200 ms + 140 ms = 1.34 seconds
How long does it take if the connection uses persistent HTTP (single connection)?
With persistent HTTP, there is only one TCP connection. The TCP connection handshake takes one
RTT, this is followed by one more RTT to request the page, one more RTT to request the images, plus
the transmission time for the page+images. Hence the total time for the page+images to show up on
the user’s screen is equal to, 3 RTTs plus transmission time which is:
3*(275 ms) + 140 ms = 450 ms + 140 ms = 590 ms
Suppose that user’s access router has a 4 MB buffer (B=byte) on the link from the router to
the user. How much delay does this buffer add during periods when the buffer is full?
W=E[N] x E[L] / c, E[N] x E[L] = 4MB = 32106 bits, c = 100 Mb/s = 108 b/s
So it adds: 32*106 bits/108 bits/sec=320 ms to the delay. - 3.1
- 3.3
21.
20.
17.
18.
19.