信号与系统(六)z变换

典型z变换

  • 单位样值序列: δ ( n ) ↔ 1 \delta(n)\leftrightarrow 1 δ(n)1, 收敛域为整个平面
  • 单位阶跃序列: u ( t ) ↔ z z − 1 u(t)\leftrightarrow \frac{z}{z-1} u(t)z1z
    收敛域为 ∣ z ∣ > 1 |z|>1 z>1
  • 单位斜变序列: n u ( n ) ↔ z ( z − 1 ) 2 nu(n)\leftrightarrow \frac{z}{(z-1)^2} nu(n)(z1)2z收敛域与单位阶跃信号相同
    n m u ( n ) ↔ ( z − 1 d d z − 1 ) m X ( z ) n^mu(n)\leftrightarrow (z^{-1}\frac{d}{dz^{-1}})^mX(z) nmu(n)(z1dz1d)mX(z)
  • 指数序列: a n u ( n ) ↔ z z − a a^nu(n)\leftrightarrow \frac{z}{z-a} anu(n)zaz ∣ z ∣ > ∣ a ∣ |z|>|a| z>a
    − a n u ( − n − 1 ) ↔ z z − a -a^nu(-n-1)\leftrightarrow\frac{z}{z-a} anu(n1)zaz ∣ z ∣ < ∣ a ∣ |z|<|a| z<a
  • 正余弦序列: cos ⁡ ω 0 n ) u ( n ) ↔ z ( z − cos ⁡ ω 0 ) z 2 − 2 z cos ⁡ ω 0 + 1 , ( ∣ z ∣ > 1 ) \cos\omega_0 n)u(n)\leftrightarrow\frac{z(z-\cos\omega_0)}{z^2-2z\cos\omega_0+1}, (|z|>1) cosω0n)u(n)z22zcosω0+1z(zcosω0),(z>1)
    sin ⁡ ω 0 n ) u ( n ) ↔ z sin ⁡ ω 0 z 2 − 2 z cos ⁡ ω 0 + 1 , ( ∣ z ∣ > 1 ) \sin\omega_0 n)u(n)\leftrightarrow\frac{z\sin\omega_0}{z^2-2z\cos\omega_0+1}, (|z|>1) sinω0n)u(n)z22zcosω0+1zsinω0,(z>1)
  • 有限长序列: 对于序列 x ( n ) , n 1 < n < n 2 x(n),n_1<n<n_2 x(n),n1<n<n2
    • n 1 < 0 , n 2 > 0 n_1<0,n_2>0 n1<0,n2>0时, 收敛域为 0 < ∣ z ∣ < ∞ 0<|z|<\infty 0<z<
    • n 1 ≥ 0 , n 2 > 0 n_1\geq0,n_2>0 n10,n2>0时,收敛域为 0 < ∣ z ∣ ≤ ∞ 0<|z|\leq\infty 0<z
    • n 1 < 0 , n 2 ≤ 0 n_1<0,n_2\leq0 n1<0,n20时, 收敛域为 0 ≤ ∣ z ∣ < ∞ 0\leq|z|<\infty 0z<
  • 双边序列: 考虑序列 x ( n ) = { a n   ( n ≤ 0 ) b n   ( n < 0 ) x(n)=\begin{cases}a^n\ (n\leq 0)\\b^n\ (n<0)\end{cases} x(n)={an (n0)bn (n<0)
    第一项的z变换为 z z − a \frac{z}{z-a} zaz,第二项z变换为 − z z − b \frac{-z}{z-b} zbz,
    收敛域取决于|a|,|b|的大小,如果 ∣ a ∣ < ∣ b ∣ |a|<|b| a<b,收敛域为圆环, 否则无收敛域

z变换性质

  • 线性性质
  • 位移性质:
    • 双边z变换: x ( n + m ) ↔ z n X ( z ) x(n+m)\leftrightarrow z^nX(z) x(n+m)znX(z)
    • 单边z变换: x ( n + m ) u ( n ) ↔ z m [ X ( z ) − ∑ k = 0 m − 1 x ( k ) z − k ] x(n+m)u(n)\leftrightarrow z^m[X(z)-\sum_{k=0}^{m-1}x(k)z^{-k}] x(n+m)u(n)zm[X(z)k=0m1x(k)zk]
      x ( n − m ) u ( n ) ↔ z − m [ X ( z ) + ∑ k = − m − 1 x ( k ) z − k ] x(n-m)u(n)\leftrightarrow z^{-m}[X(z)+\sum_{k=-m}^{-1}x(k)z^{-k}] x(nm)u(n)zm[X(z)+k=m1x(k)zk]
  • 线性加权性质: n x ( n ) u ( n ) ↔ − z d X ( z ) d z = z − 1 d X ( z ) d ( z − 1 nx(n)u(n)\leftrightarrow -z\frac{dX(z)}{dz}=z^{-1}\frac{dX(z)}{d(z^{-1}} nx(n)u(n)zdzdX(z)=z1d(z1dX(z)
  • 序列指数加权性质: a n x ( n ) u ( n ) ↔ X ( z a ) a^nx(n)u(n)\leftrightarrow X(\frac{z}{a}) anx(n)u(n)X(az)
  • 初值定理: x ( 0 ) = lim ⁡ z → ∞ X ( z ) x(0)=\lim_{z\to\infty}X(z) x(0)=zlimX(z)
  • 终值定理: lim ⁡ n → ∞ x ( n ) = lim ⁡ z → 1 [ ( z − 1 ) X ( z ) ] \lim_{n\to\infty}x(n)=\lim_{z\to 1}[(z-1)X(z)] nlimx(n)=z1lim[(z1)X(z)]
  • 时域卷积定理: x ( n ) ∗ h ( n ) ↔ X ( z ) H ( z ) x(n)*h(n)\leftrightarrow X(z)H(z) x(n)h(n)X(z)H(z)
  • z域卷积定理: x ( n ) h ( n ) ↔ 1 2 π j ∮ C 1 X ( z v ) H ( v ) v − 1 d v x(n)h(n)\leftrightarrow \frac{1}{2\pi j}\oint_{C_1}X(\frac{z}{v})H(v)v^{-1}dv x(n)h(n)2πj1C1X(vz)H(v)v1dv
  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值