在开始学习机器学习时,从网上查了很多信息,得到的很多事推荐看周志华老师的《机器学习》,外号西瓜书(真的是相当难,但啃下来了);看吴恩达老师的视频课,无奈英语太弱,实在是抽象。
最终还是用周志华老师的书学下来了,推荐一个学习顺序,我的笔记也是这么记录的。因为书上的知识点很抽象,所以我在这里做了补充,同样书上很多的知识点,会在笔记中作为引用,有些文字描述不清楚的地方,会用图片进行说明,没法用数字描述的,我会上传自己的笔记(字丑莫见怪)。
(一)支持向量机
1.1线性可分
1.2线性不可分
1.3优化理论补充
1.4什么是对偶问题
1.5对偶问题与原问题的关系
1.6利用原问题和对偶问题求解SVM
(二)神经网络
2.1 感知器算法
2.2多层神经网络
2.3后向传播算法
(三)迁移学习
(四)增强学习
(五)主成分分析
(六)概率分类法
(七)隐含马尔可夫
参考书为周志华老师的《机器学习》:
对,就是它,西瓜书…