51nod 1344 走格子

该博客介绍了如何解决一个机器人走格子的问题,其中每个格子带有能量值。机器人需要从1号格子走到n号格子,途中可以获取或消耗能量。若能量值为正则增加,为负则消耗。目标是找出机器人所需的最小初始能量。通过遍历格子并记录最低能量值,博主给出了C++代码实现来找出答案。这个问题涉及到了路径规划和状态转移的算法思想。
摘要由CSDN通过智能技术生成

1344 走格子

题目链接:http://www.51nod.com/Challenge/Problem.html#problemId=1344

题目描述:

有编号1-n的n个格子,机器人从1号格子顺序向后走,一直走到n号格子,并需要从n号格子走出去。机器人有一个初始能量,每个格子对应一个整数A[i],表示这个格子的能量值。如果A[i] > 0,机器人走到这个格子能够获取A[i]个能量,如果A[i] < 0,走到这个格子需要消耗相应的能量,如果机器人的能量 < 0,就无法继续前进了。问机器人最少需要有多少初始能量,才能完成整个旅程。

例如:n = 5。{1,-2,-1,3,4} 最少需要2个初始能量,才能从1号走到5号格子。途中的能量变化如下3 1 0 3 7。

输入:

第1行:1个数n,表示格子的数量。(1 <= n <= 50000)
第2 - n + 1行:每行1个数A[i],表示格子里的能量值(-1000000000 <= A[i] <= 1000000000)

输出:

输出1个数,对应从1走到n最少需要多少初始能量。
输入样例
5
1
-2
-1
3
4
输出样例
2

解题思路:

能量小于0无法继续前进,因此初始能量最小值就是走格子时负数最小的能量值的相反数。

代码如下:

#include<iostream>
#include<algorithm>
#include<cstdio>

using namespace std;
#define ll long long
int main(){
	ll n;
	cin>>n;
	ll a[100010];
	for(int i=0;i<n;i++){
		cin>>a[i];
	}
	ll sum=0,maxn=0;
	for(int i=0;i<n;i++){
		sum+=a[i];
		if(sum<0)
			maxn=max(maxn,-sum);
	}
	cout<<maxn<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值