要常来看看呀

常用求导公式

( x a ) ′ = a x a − 1 ( a 为常数 ) ( a x ) ′ = a x ln ⁡ a ( e x ) ′ = e x ( log ⁡ 2 x ) ′ = 1 x ln ⁡ a ( l n ∣ x ∣ ) ′ = 1 x ( sin ⁡ x ) ′ = cos ⁡ x ( cos ⁡ x ) ′ = − sin ⁡ x ( arcsin ⁡ x ) ′ = 1 1 − x 2 ( arccos ⁡ x ) ′ = − 1 1 − x 2 ( cot ⁡ x ) ′ = − csc ⁡ 2 x ( arctan ⁡ x ) ′ = 1 1 + x 2 ( a r c c o t x ) ′ = − 1 1 + x 2 ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x (x^a)'=ax^{a-1} (a为常数) \\ (a^x)'=a^x\ln{a} \\ (e^x)'=e^x \\ (\log_2{x})'=\frac{1}{x\ln{a}} \\ (ln{|x|})'= \frac{1}{x} \\ (\sin{x})' = \cos{x} \\ (\cos{x})' = -\sin{x} \\ (\arcsin{x})' = \frac{1}{\sqrt{1-x^2}} \\ (\arccos{x})' = -\frac{1}{\sqrt{1-x^2}} \\ (\cot{x})' = -\csc^2{x} \\ (\arctan{x})' = \frac{1}{1+x^2} \\ (arccot{x})' = -\frac{1}{1+x^2} \\ (\sec{x})' = \sec{x}\tan{x} \\ (\csc{x})' = - \csc{x}\cot{x} \\ (xa)=axa1(a为常数)(ax)=axlna(ex)=ex(log2x)=xlna1(lnx)=x1(sinx)=cosx(cosx)=sinx(arcsinx)=1x2 1(arccosx)=1x2 1(cotx)=csc2x(arctanx)=1+x21(arccotx)=1+x21(secx)=secxtanx(cscx)=cscxcotx

[ ln ⁡ ( x + x 2 + 1 ) ] ′ = 1 x 2 + 1 [\ln(x+\sqrt{x^2+1})]' = \frac{1}{\sqrt{x^2+1}} \\ [ln(x+x2+1 )]=x2+1 1
[ ln ⁡ ( x + x 2 − 1 ) ] ′ = 1 x 2 − 1 [\ln(x+\sqrt{x^2-1})]' = \frac{1}{\sqrt{x^2-1}} \\ [ln(x+x21 )]=x21 1
高阶求导公式
… \dots

常用等价无穷小

sin ⁡ x ∼ x . tan ⁡ x ∼ x . arctan ⁡ x ∼ x . ln ⁡ ( 1 + x ) ∼ x . e x − 1 ∼ x . a x − 1 ∼ x ln ⁡ ( a ) . 1 − cos ⁡ x ∼ 1 2 x 2 . ( 1 + x ) a − 1 ∼ a x . \sin{x} \sim x.\\ \tan{x} \sim x.\\ \arctan{x} \sim x.\\ \ln(1+x) \sim x.\\ e^x-1 \sim x.\\ a^x-1 \sim x\ln(a).\\ 1-\cos{x} \sim \frac{1}{2}x^{2}.\\ (1+x)^a-1 \sim ax. sinxx.tanxx.arctanxx.ln(1+x)x.ex1x.ax1xln(a).1cosx21x2.(1+x)a1ax.

泰勒公式
求极限速查

当 x → 0 时 当x\rarr0时 x0
sin ⁡ x = x − x 3 3 ! + ο ( x 3 )   . arcsin ⁡ x = x + x 3 3 ! + ο ( x 3 )   . arctan ⁡ x = x − x 3 3 + ο ( x 3 )   . arctan ⁡ x = x + x 3 3 + ο ( x 3 )   . cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! + ο ( x 4 )   . e x = 1 + x + x 2 2 ! + x 3 3 ! + ο ( x 3 ) . ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 + ο ( x 3 ) . ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + ο ( x 2 ) \sin{x}=x-{x^{3} \over 3!}+\omicron(x^{3})\,.\\ \arcsin{x}=x+{x^{3} \over 3!}+\omicron(x^{3})\,.\\ \arctan{x}=x-{x^{3} \over 3}+\omicron(x^{3})\,.\\ \arctan{x}=x+{x^{3} \over 3}+\omicron(x^{3})\,.\\ \cos{x}=1-{x^{2} \over 2!}+{x^{4} \over 4!}+\omicron(x^{4})\,.\\ e^x=1+x+{x^{2} \over 2!}+{x^{3} \over 3!}+\omicron(x^{3}).\\ \ln(1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\omicron(x^{3}).\\ (1+x)^a=1+ax+\frac{a(a-1)}{2!}x^{2}+\omicron(x^{2}) sinx=x3!x3+ο(x3).arcsinx=x+3!x3+ο(x3).arctanx=x3x3+ο(x3).arctanx=x+3x3+ο(x3).cosx=12!x2+4!x4+ο(x4).ex=1+x+2!x2+3!x3+ο(x3).ln(1+x)=x2x2+3x3+ο(x3).(1+x)a=1+ax+2!a(a1)x2+ο(x2)

带拉格朗日余项的n阶泰勒公式

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{1}{2!}f''(x_0)(x-x_0)^2+\dots+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} f(x)=f(x0)+f(x0)(xx0)+2!1f′′(x0)(xx0)2++n!1f(n)(x0)(xx0)n+(n+1)!f(n+1)(ξ)(xx0)n+1

带佩亚诺余项的n阶泰勒公式

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + ο ( ( x − x 0 ) n ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{1}{2!}f''(x_0)(x-x_0)^2+\dots+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+\omicron((x-x_0)^n) f(x)=f(x0)+f(x0)(xx0)+2!1f′′(x0)(xx0)2++n!1f(n)(x0)(xx0)n+ο((xx0)n)

麦克劳林公式

f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f n ( 0 ) n ! x n + f n + 1 ( 0 ) ( n + 1 ) ! x n + 1 f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\dots+\frac{f^{n}(0)}{n!}x^n+\frac{f^{n+1}(0)}{(n+1)!}x^{n+1} f(x)=f(0)+f(0)x+2!f′′(0)x2++n!fn(0)xn+(n+1)!fn+1(0)xn+1
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f n ( 0 ) n ! x n + ο ( x n ) f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\dots+\frac{f^{n}(0)}{n!}x^n+\omicron(x^n) f(x)=f(0)+f(0)x+2!f′′(0)x2++n!fn(0)xn+ο(xn)

常见函数泰勒展开成幂级数

e x = ∑ n = 0 ∞ x n n ! ,   − ∞ < x < + ∞ e^x = \displaystyle\sum_{n=0}^\infty \frac{x^n}{n!}, \space -\infty<x<+\infty ex=n=0n!xn, <x<+
1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n ,   − 1 < x < 1 \frac{1}{1+x} = \displaystyle\sum_{n=0}^\infty (-1)^n x^n, \space \textcolor{#990000}{-1<x<1} 1+x1=n=0(1)nxn, 1<x<1
1 1 − x = ∑ n = 0 ∞ x n ,   − 1 < x < 1 \frac{1}{1-x} = \displaystyle\sum_{n=0}^\infty x^n, \space \textcolor{#990000}{-1<x<1} 1x1=n=0xn, 1<x<1
ln ⁡ ( 1 + x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 x n n ,   − 1 < x ⩽ 1 \ln(1+x)= \displaystyle\sum_{n=1}^\infty (-1)^{n-1} \frac{x^n}{n}, \space \textcolor{#990000}{-1<x\leqslant 1} ln(1+x)=n=1(1)n1nxn, 1<x1
sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! ,   − ∞ < x < + ∞ \sin{x} = \displaystyle\sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \space -\infty<x<+\infty sinx=n=0(1)n(2n+1)!x2n+1, <x<+
cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! ,   − ∞ < x < + ∞ \cos{x} = \displaystyle\sum_{n=0}^\infty (-1)^n \frac{x^{2n}}{(2n)!}, \space -\infty<x<+\infty cosx=n=0(1)n(2n)!x2n, <x<+
( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯ + α ( α − 1 ) … ( α − n + 1 ) n ! x n + … ,   { x ∈ ( − 1 , 1 ) 当  α ⩽ − 1 x ∈ ( − 1 , 1 ] 当  − 1 < α < 0 x ∈ [ − 1 , 1 ] 当  α > 0 且 α ∉ N + x ∈ R 当  α ∈ N + (1+x)^\alpha = 1 + \alpha x + \frac{ \alpha( \alpha -1)}{2!} x^2 + \dots + \frac{ \alpha( \alpha -1) \dots (\alpha-n+1)}{n!} x^n + \dots, \space \begin{cases} x \in (-1,1) &\text{当 } \alpha \leqslant -1 \\ x \in (-1,1] &\text{当 } -1 < \alpha < 0 \\ x \in [-1,1] &\text{当 } \alpha >0 \text{且} \alpha \notin \mathbf{N}_+ \\ x \in \mathbf{R} &\text{当 } \alpha \in \mathbf{N}_+ \end{cases} (1+x)α=1+αx+2!α(α1)x2++n!α(α1)(αn+1)xn+,  x(1,1)x(1,1]x[1,1]xR α1 1<α<0 α>0α/N+ αN+

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值