证明KL divergence 大于0

KL divergence 有2个定义,分别是对于random variable 和 continuous variable, 我们经常使用它作为两个概率分布之间不相似性的度量。

对于Random variable(随机变量),有

在这里插入图片描述

对于continuous variable(连续变量),有

在这里插入图片描述
我们在此做对于Random variable的定义的KL >= 0的证明
为了证明该不等式,我们需要用到Jensen’s inequality 若 𝑓(𝑥) 是区间 [𝑎,𝑏] 上的凸函数,
,则下列不等式成立。:
Jensen’s inequality 提到 that if φ(x) is a convex function of x, we have
φ ( E ( x ) ) < = E ( φ ( x ) ) φ(E(x))<= E(φ(x)) φ(E(x))<=E(φ(x))

将期望值展开后,是这样一个式子, 其中 ∑ i a i = 1 \sum_i a_i = 1 iai=1:
  𝑓 ( 𝑎 1 𝑥 1 + 𝑎 2 𝑥 2 + ⋯ + 𝑎 𝑛 𝑥 𝑛 ) ≤ 𝑎 1 𝑓 ( 𝑥 1 ) + 𝑎 2 𝑓 ( 𝑥 2 ) + ⋯ + 𝑎 𝑛 𝑓 ( 𝑥 𝑛 ) 𝑓(𝑎_1𝑥_1+𝑎_2𝑥_2+⋯+𝑎_𝑛𝑥_𝑛)≤𝑎_1𝑓(𝑥_1)+𝑎_2𝑓(𝑥_2)+⋯+𝑎_𝑛𝑓(𝑥_𝑛) f(a1x1+a2x2++anxn)a1f(x1)+a2f(x2)++anf(xn)
  K L ( p ∣ ∣ q ) = ∑ x p ( x ) l o g 2 p ( x ) q ( x ) = − ∑ x p ( x ) l o g 2 q ( x ) p ( x ) KL(p||q) = \sum_{x}p(x)log_{2}\frac{p(x)}{q(x)} = -\sum_{x}p(x)log_{2}\frac{q(x)}{p(x)} KL(p∣∣q)=xp(x)log2q(x)p(x)=xp(x)log2p(x)q(x)
  这里p(x) 即为 a i a_i ai, q(x)/p(x) 即为 x i x_i xi, thi 是log2
  > = − l o g 2 ( ∑ x p ( x ) q ( x ) p ( x ) ) = − l o g 2 ( ∑ q ( x ) ) = 0 >=- log_{2}(\sum_{x}p(x)\frac{q(x)}{p(x)}) = -log_2(\sum q(x)) = 0 >=log2(xp(x)p(x)q(x))=log2(q(x))=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值