数据结构python-第三节

数据结构与算法python-第三节-链表

一 链表和顺序表的区别在哪儿呢?

同样的,我们还是要存储一组数据。而且存储空间不够的时候,需动态的改变数据区。当我们存储的是离散的数据,我们该使用什么样的数据结构进行串联存储呢?

为什么需要链表?

顺序表的构建需要预选知道数据大小来申请连续的存储空间,而在进行扩充时,又需要进行数据的搬迁,所有使用起来并不是很灵活。而链表结构可以充分利用计算机内存空间,实现灵活的内存动态管理

链表的定义

链表是一种常见的基础数据结构,是一种线性表,但是不像顺序表一样连续存储数据,而是在每一个节点(数据存储单元)里存放下一个节点的位置信息(即地址)
在这里插入图片描述

链表的原理

在这里插入图片描述

二 单向链表

即方向唯一的链表
单向链表也叫单链表,是链表中最简单的一种形式,它的每个节点包含两个域,一个信息域(元素域)和一个链接域。这个连接指向链表中的下一个节点而最后一个节点的链接域则指向一个空格。第一个节点叫做节点,最后一个节点称为伪节点。
在这里插入图片描述
表元素域elem用来存放具体的数据;链接域next用来存放下一个节点的位置。
变量p指向链表的头节点的位置,从p出发能找到表中的任意节点

单链表的常规操作

  • is_empty() 链表是否为空
  • lenth() 链表长度
  • travel() 遍历整个链表
  • add() 链表头部添加元素
  • append() 链表尾部添加元素
  • insert() 指定位置添加元素
  • remove() 删除节点
  • search() 查找节点是否存在

链表的实现

在这里有个点要提,关于a=10,b=20;a,b = b,a,改变的是地址的导向,a和b保存的都是对象的地址
节点实现

class SingleNode(object):
    '''单链表的结点'''
    def __init__(self,item):
        # _item存放数据元素
        self.item = item
        # _next是下一个节点的标识
        self.next = None

单链表的实现及测试

class SingleNode(object):
    '''单链表的结点'''
    def __init__(self,elem):
        # _item存放数据元素
        self.elem = elem
        # _next是下一个节点的标识
        self.next = None
class SingleLinkList(object):
    '''单链表'''
    def __init__(self,node=None):
        self.__head = node
    def is_empty(self):
        '''链表是否为空'''
        return self.__head==None
    def length(self):
        """链表长度"""
        # cur游标,用来移动遍历节点
        cur = self.__head
        # count记录数量
        count = 0
        while cur != None:
            count += 1
            cur = cur.next
        return count
    def travel(self):
        """遍历整个链表"""
        cur = self.__head
        while cur != None:
            print(cur.elem)
            cur = cur.next
    def add(self,item):
        """链表头部添加元素"""
        node = SingleNode(item)
        node.next = self.__head
        self.__head=node

    def append(self,item):
        """链表尾部添加元素"""
        node = SingleNode(item)
        if self.is_empty():
            self.__head = node
        else:
            cur = self.__head
            while cur.next !=None:
                cur = cur.next
            cur.next = node

    def insert(self,pos,item):
        """指定位置插入元素"""
        """
        :param pos 从0开始
        :item elem 元素值
        """
        if pos <=0:
            self.add(item)
        elif pos>self.length()-1:
            self.append(item)
        else:
            pre = self.__head
            count =0
            while count < pos - 1:
                count +=1
                pre = pre.next
            # 当循环结束后,pre指向pos-1位置
            node =SingleNode(item)
            node.next = pre.next
            pre.next =node


    def remove(self,item):
        """删除节点"""
        cur = self.__head
        pre = None
        while cur != None:
            if cur.elem == item:
                if cur == self.__head:
                    self.__head = cur.next
                else:
                    pre.next = cur.next
                break
            else:
                pre = cur
                cur = cur.next


    def search(self,item):
        """查找节点是否存在"""
        cur = self.__head
        while cur.next != None:
            if cur.elem == item:
                return True
            else:
                cur = cur.next
        return False

if __name__ == "__main__":
    ll = SingleLinkList()
    print(ll.is_empty())
    print(ll.length())

    ll.append(1)
    print(ll.is_empty())
    print(ll.length())

    ll.append(2)
    ll.append(4)
    ll.append(3)
    ll.travel()
    print(ll.length())
    ll.add(8)
    print()
    ll.travel()
    print()
    ll.insert(-1,10)
    ll.insert(1, 7)
    ll.insert(10,99)
    ll.travel()

    print()
    ll.remove(10)
    ll.remove(99)
    ll.travel()

单链表与顺序表的对比

链表失去了顺序表随机读取的优点,同时链表由于增加了节点的指针域,空间开销比较大,但对存储空间的使用要相对灵活
链表与顺序表的各种操作复杂度如下所示:
在这里插入图片描述
注意虽然表面看起来复杂度都是O(n),但是链表和顺序表在插入和删除时进行的是完全不同的操作。链表的主要耗时操作是遍历查找,删除和插入操作本身的复杂度是O(1)。顺序表查找很快,主要耗时的操作是拷贝和覆盖。因为除了目标在尾部的特殊情况,顺序表进行插入和删除时需要对操作点之后的所有元素进行前后移位操作,只能通过拷贝和覆盖的方法进行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值