杭电多校 K . I love max and multiply (思维)

链接

题意

\(C_k=max\{A_iB_j\}\), satisfying \((i\&j≥k)\)
让你求\(\sum ^{n−1}_{i=0}C_i mod 998244353\).

思路

我们首先看条件i&j>=k这个范围太大了,我们直接分析i&j=k然后求后缀最大值即可做成上面的结果,之后我们在分析,因为\(A_iB_i\)存在负数,所以我们不仅要维护\(A_i,B_i\)的最大值,还要维护最小值(负负得正),

然后我们再看\((i\&j=k)\)这个点,我们怎么实现那?
我们知道 ^ 是不进位家法,如果 假设x二进制最高位的1在第k位上剩下为都为0,而y第k位上二进制为1,那么y>x^y,原因是,x的第k位上的1,把y第k位上的1消掉了,其他位不变,所以我们可以利用这个信息筛出与 x^y位上是1的都是1,(有点说不清举个例子来说吧)
二进制表示的:x=1000,y=101011
那么z=x^y=100011z二进制是1的位置上y也是1,把这些放到一起,就构成了(&=z)的集合,不好理解,多举几组例子还是可以理解的,

ll n;
ll a[maxn],b[maxn],ans[maxn];
ll mxa[maxn],mia[maxn];
ll mxb[maxn],mib[maxn];

void solve()
{
	scanf("%lld",&n);
	ll num=log2(n)+1;
	
	for(int i=0;i<n;i++) scanf("%lld",&a[i]);
	for(int i=0;i<n;i++) scanf("%lld",&b[i]);
	/****/
	
	for(int i=0;i<(1ll<<num);i++){
		mxa[i]=mxb[i]=-1e18;
		mia[i]=mib[i]=1e18;
		ans[i]=-1e18;
	}
	
	for(int i=0;i<n;i++) mxa[i]=mia[i]=a[i],mib[i]=mxb[i]=b[i];
	
	for(int i=0;i<num;i++){
		for(int j=0;j<(1<<num);j++){
			if((j>>i)&1){
				mxa[j^(1<<i)]=max(mxa[j^(1<<i)],mxa[j]);
				mia[j^(1<<i)]=min(mia[j^(1<<i)],mia[j]);
				mxb[j^(1<<i)]=max(mxb[j^(1<<i)],mxb[j]);
				mib[j^(1<<i)]=min(mib[j^(1<<i)],mib[j]);
			}
		}
	}
	
	for(int i = 0; i < n; i ++ ){
		if(mxa[i]!=1e18&&mxb[i]!=1e18)ans[i]=max(ans[i],mxa[i]*mxb[i]);
		if(mxa[i]!=1e18&&mib[i]!=-1e18)ans[i]=max(ans[i],mxa[i]*mib[i]);
		if(mia[i]!=-1e18&&mxb[i]!=1e18)ans[i]=max(ans[i],mia[i]*mxb[i]);
		if(mia[i]!=-1e18&&mib[i]!=-1e18)ans[i]=max(ans[i],mia[i]*mib[i]);
	}
	ll sum=(ans[n-1]%mod+mod)%mod;
	for(int i = n - 2;i >= 0; i --){
		ans[i]=max(ans[i],ans[i+1]);
		sum=((sum+ans[i]%mod)+mod)%mod;
	}
	cout<<sum<<endl;

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值