找出作弊的人

题目来自于博主算法大师的专栏:最新华为OD机试C卷+AB卷+OJ(C++JavaJSPy) https://blog.csdn.net/banxia_frontend/category_12225173.html

题目描述

公司组织了一次考试,现在考试结果出来了,想看一下有没人存在作弊行为,但是员工太多了,需要先对员工进行一次过滤,再进一步确定是否存在作弊行为。

过滤的规则为:找到分差最小的员工ID对(p1,p2)列表,要求p1<p2

员工个数取值范国:O<n<100000

员工ID为整数,取值范围:0<=n<=100000

考试成绩为整数,取值范围:0<=score<=300

输入描述

员工的ID及考试分数

输出描述

分差最小的员工ID对(p1,p2)列表,要求p1<p2。每一行代表一个集合,每个集合内的员工ID按顺序排列,多行结果也以员工对中p1值大小升序排列(如果p1相同则p2升序)。

样例1

输入:

5
1 90
2 91
3 95
4 96
5 100

输出:

1 2
3 4

解释:

输入:第一行为员工个数n,后续的n行第一个数值为员工ID,第二个数值为员工考试分数

输出:员工1和员工2的分差为1,员工3和员工4的分差也为1,因此最终结果为

1 2
3 4

样例2

输入:

5
1 90
2 91
3 92
4 85
5 86

输出:

1 2
2 3
4 5 

代码

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX 100000
// 定义结构体,用于存储员工的ID和分数
typedef struct {
    int id;
    int score;
} pairs;
// 定义比较函数,用于qsort函数对员工按照id进行排序
int cmp(const void *a, const void *b) {
    int id1 = ((pairs *)a)->id;
    int id2 = ((pairs *)b)->id;
    return id1 - id2;
}
int main() {
    int n;
    scanf("%d", &n);
    // 创建一个动态数组用于存储员工的ID和分数
    pairs *p = (pairs *)malloc(n * sizeof(pairs));
    for (int i = 0; i < n; i++) {
        scanf("%d %d", &p[i].id, &p[i].score);
    }
    int min = 300;
    for (int i = 0; i < n - 1; i++) {
        min = abs(p[i + 1].score - p[i].score) < min
                  ? abs(p[i + 1].score - p[i].score)
                  : min;
    }
    // 创建一个动态数组用于存储分差最小的员工ID对
    pairs *res = (pairs *)malloc(n * sizeof(pairs));
    int count = 0;
    for (int i = 0; i < n - 1; i++) {
        // 如果当前分差等于最小分差,则将当前员工ID对添加到结果动态数组中
        if (abs(p[i + 1].score - p[i].score) == min) {
            res[count].id = p[i].id;
            res[count].score = p[i].score;
            count++;
        }
    }

    qsort(res, count, sizeof(pairs), cmp);
    // 遍历排序后的员工动态数组,计算相邻员工的分差
    for (int i = 0; i < count; i++) {
        printf("%d %d\n", res[i].id, res[i].id + 1);
    }

    return 0;
}
### 使用Python检测作弊行为 #### 利用机器学习技术构建抄袭检测器 为了创建一个有效的抄袭检测工具,可以采用Word2Vec和余弦相似度等自然语言处理(NLP)技术。此过程涉及加载文档集合并计算每对学生提交作品之间的文本相似程度。当两份或多份作业间的匹配数超过设定阈值时,则认为可能存在剽窃现象[^1]。 ```python from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity def calculate_cosine_similarities(documents): vectorizer = TfidfVectorizer().fit_transform(documents) vectors = vectorizer.toarray() # 计算所有文档间成对的cosine similarity矩阵 cos_sim_matrix = cosine_similarity(vectors) return cos_sim_matrix ``` #### 构建智慧教室中的考试防作弊系统 除了传统的文字对比外,在更复杂的场景下比如考场内防止考生违规操作方面也有解决方案。利用计算机视觉领域内的先进技术如多姿态估计、面部表情识别以及身份验证手段能够有效遏制此类不当举动的发生。具体来说就是安装摄像头捕捉现场画面再由后台程序析图像流从而发现可疑动作模式[^2]。 ```python import cv2 import face_recognition video_capture = cv2.VideoCapture(0) while True: ret, frame = video_capture.read() rgb_frame = frame[:, :, ::-1] locations = face_recognition.face_locations(rgb_frame) encodings = face_recognition.face_encodings(rgb_frame, locations) for encoding in encodings: matches = face_recognition.compare_faces(known_face_encodings, encoding) if not any(matches): # 如果找不到匹配的脸编码则触发警报机制 send_alert_to_admin() video_capture.release() cv2.destroyAllWindows() ``` #### 基于用户行为数据析异常活动 对于在线平台而言,监测用户的交互习惯同样有助于揭露潜在的不正当竞争状况。这里可以通过收集诸如点击量布情况、访问频率变化趋势之类的元数据来进行深入挖掘;借助Isolation Forest 或者One-Class SVM这样的算法模型来甄别偏离正常范围之外的数据点作为疑似案例进一步审查[^4]。 ```python from sklearn.ensemble import IsolationForest data = load_user_behavior_data() model = IsolationForest(contamination=0.05).fit(data) predictions = model.predict(data) anomalies_indices = np.where(predictions == -1)[0].tolist() for index in anomalies_indices: review_case(index=index) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

~柠月如风~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值