刷题周记(三)——#最小生成树:Kruskal#二分图:染色法、匈牙利算法#拓扑#DFS:排列数字、n-皇后#BFS:走迷宫、八格码#List容器

——2020年11月8日(周日)——————————————————

周测啦……

——2020年11月9日(周一)——————————————————

搞堆优化的Prim去了……

——2020年11月10日(周二)——————————————————

在这里插入图片描述

最小生成树(稀疏图)

以下来源于百度百科:
稀疏图,数据结构中的一种定义图。与之相反的是稠密图。稀疏图的边数远远少于完全图,反之,稠密图的边数接近于或等于完全图。

所以,之前的Prim就是用于稠密图了……

一、Kruskal 求最小生成树

这是之前的笔记
思路
就是对 边 进行操作就可以了!

  1. 将所有边按权重从小到大排列(O(m log m))
  2. 枚举所有边,若边的两点没有连通,就加入这条边。(O(m))
    思路超级简单!算法及其优美!实际效率据说还很高……
    用于稀疏图。

答案

#include<bits/stdc++.h>
using namespace std;
const int N = 200010;

int n, m;
int p[N];
//定义数据结构E,方便对边进行操作
struct E{
    int a, b, w;
}e[N];
//重定义比较大小
bool operator < (E &a, E &b){
    return a.w < b.w;
}
//简洁明了的并查集写法
int find(int x){
    return p[x] == x ? p[x] : p[x] = find(p[x]);
}

int main(){
    cin >> n >> m;
    for(int i = 0; i < m; i ++){
        int a, b, w;
        cin >> a >> b >> w;
        e[i] = {a, b, w};
    }
    //这里默认从小到大排列,用到“<”的时候会触发重定义的条件
    sort(e, e + m);
    //这里还用到了并查集!
    for(int i = 1; i < n; i ++) p[i] = i;
    
    int res = 0, cnt = 0;
    for(int i = 0; i < m; i ++){
        int a = e[i].a, b = e[i].b, w = e[i].w;
        a = find(a), b = find(b);
        //比较祖先,如果不是一个就合并
        if(a != b){
            p[a] = b;;
            res += w;
            //这里统计的是边数哦!
            cnt ++;
        }
    }
    //边数不够说明无法建立最小生成树!
    if(cnt < n - 1) cout << "impossible";
    else cout << res;
    
    return 0;
}

二分图

二、染色法 判断二分图

这是过去的笔记,有点烂……
题目

#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10, M = 2*N;

int n, m;
int cl[N];
//用邻接表来储存……
int ne[M], e[M], h[M], idx = 0;
void add(int a, int b){
    ne[idx] = h[a], e[idx] = b, h[a] = idx ++;
}

bool dfs(int u, int c){
    cl[u] = c;
    //找到所有与之相关的节点
    for(int i = h[u]; i != -1; i = ne[i]){
        int j = e[i];
        //3-c是用来将1变成2,2变成1的啦……1和2代表了不同的颜色,0代表无颜色
        //如果没有被染色就染色吧
        if(!cl[j]) dfs(j, 3 - c);      
        //要是染了色的话,而且还与当前节点颜色相同,那就返回错误;一样就不管他,所以这里用else if !
        else if(cl[j] == c) return 0;
    }
    //整个操作下来没问题就返回1
    return 1;
}

int main(){
    cin >> n >> m;
    //邻接表一定不要漏了这句话!
    memset(h, -1, sizeof(h));
    while(m --){
        int a, b;
        cin >> a >> b;
        //双向图哦!
        add(a, b), add(b, a);
    }
    
    int flag = 1;
    //接下来一个一个点地看
    for(int i = 1; i <= n; i ++)
    //如果在之前的操作中没有被染色,说明从它开始又是一个新的色块了
        if(!cl[i])
	        //默认某一色块第一个点是1
	        //如果出了问题会返回0
            if(!dfs(i, 1)){
                flag = 0;
                break;
            }
            
    if(flag) cout << "Yes";
    else cout << "No";
    return 0;
}

三、匈牙利算法

题目链接

很神奇的算法,可以用 牵红线 的思路去理解,请看之前的笔记
总之这一次我用简单的语言解释一下:
首先,我们给出的图必定是二分图,所以根据二分图的定义,我们可以将所有的点分成两份,做成以下的样子:
在这里插入图片描述

  1. 像这样分成两个点集,左边全是红色,右边全是蓝色,中间的红线代表他们之间的边;

  2. 遍历所有蓝色的点,一找到有边连着的点就先连上,像这样:
    蓝色一号 和 红色一号有边相连,就立即连上在这里插入图片描述

    那么 现在我们已经完成一个匹配了!!!

要是出现了当前 蓝点 想要连起来的 红点 已经被连起来了怎么办?这要分两种情况讨论:

  1. 第一种方案:优先让之前的 蓝点 选其它的 红点 ,
    也就是说, 要是 蓝色一号 还有其它出边,那就让 蓝色一号 找另一个红色节点。
    像这样:
    蓝色一号 要是 还有通向 红色二号 的边的话,那就让 蓝色一号 改为 与红色二号匹配
    然后将 红色一号 让给 蓝色二号……
    在这里插入图片描述

  2. 第二种方案:让当前蓝点找其他红点
    先这样 蓝色一号 其实是没有其他出边了的,
    那就 让 蓝色二号 放弃 红色一号 ,然后 去找其它出边。
    于是蓝色二号 找到了 红色四号:

在这里插入图片描述
那么 现在我们已经完成两个匹配了!!!

像这样一直下去,我们可以一路做到这样的情况:
在这里插入图片描述
5.现在迎来了最后一个问题:要是当前蓝点 要的 红点 已经被 占有,并且占有那个红点的 蓝点 已经没有其他出边了怎么办?
通过上图可知: 蓝色五号 只能 通往 红色四号,但是红色四号 已被 蓝色二号 占有且 蓝色二号 没有出边。
也就是说,之前两个 解决方案都失效了……
那么只好放弃这个点了……
这就是为什么要求最大匹配,因为有可能有的点是匹配不上的!

#include<bits/stdc++.h>
using namespace std;
const int N = 510, M = 100010;

int n1, n2, m;
int e[M], ne[M], h[N], idx = 0;
int match[N];
bool st[N];

void add(int a, int b){
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++  ;
}

bool find(int x){
    for(int i = h[x]; i != -1; i = ne[i]){
        //j是与当前蓝点有关联的红点
        int j = e[i];
        //st在这里就是为了避免某种循环:详细的配图例的例子看程序下面
        if(!st[j]){
			//只要是对红点进行了操作,都要将它标记起来
            st[j] = 1;
            //如果那个红点没有被占有 或者 占有那个红点的蓝点还有出路
            if(match[j] == 0 || find(match[j])){
            	//那就将找到的红点匹配给当前蓝点
                match[j] = x;
                //匹配成功就返回1好了,返回到前面的函数里就代表 "占有那个红点的蓝点还有出路”,返回主函数就说明 匹配好的点又多了一对!
                return 1;
            }
        }
    }
    //要是所有的出边都找完了都没有找到一个出路,那就是匹配失败了……
    //同样有两个意思:返回到前面的函数里就代表 "占有那个红点的蓝点没有出路”,返回主函数就说明 匹配好的并没有多出一对……
    return 0;
}

int main(){
    cin >> n1 >> n2 >> m;
    memset(h, -1 ,sizeof(h));
    
    while(m --){
        int a, b;
        cin >> a >> b;
        add(a, b);
    }
    
    int res = 0;
    for(int i = 1; i <= n1; i ++){
        memset(st, 0, sizeof(st));
        if(find(i)) res ++;
    }
    cout << res;
    return 0;
}

中间的图例补充:

假设 蓝色一号二号 通向红色一号蓝色二号三号通向红色二号
蓝色三号想要红色一号,但是红色一号已经被蓝色二号占有了,那就让蓝色二号去找红色二号
红色二号已经被蓝色三号占有了,那么蓝色三号又来找红色一号……
像这样,会陷入红色一号蓝色二号红色二号蓝色三号 轮流寻找的循环,

开了st数组之后,st会记下红色一号已经被找过一轮了,那么后来蓝色三号就不会又来找红色一号了!

在这里插入图片描述

解释起来好麻烦……

——2020年11月11日(周三)——————————————————

双十一了哦!不过没有买什么东西啊…………

一、拓扑排序

拓扑序就是,将一个图里的所有的点重新排序,使得所有的点的出边都是指向后面的点的序列。

#include<bits/stdc++.h>
using namespace std;
const int N = 100010;
int n, m;
int q[N], d[N];
//用邻接表来储存图
int h[N], e[N], ne[N], idx;
void add( int a, int b){
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}
//拓扑序用宽搜来做,具体是每次取出一个入度为0的点,将它的所有出边都删掉,也就是将那些终点的入度减一。
bool topsort(){
    int hh = 0, tt = -1;
    //先将所有入度为0的点入队
    for(int i = 1; i <= n; i ++)				
        if(!d[i]) q[++ tt] = i;
    
    while(hh <= tt){							
        int t = q[hh ++];						
        for(int i = h[t]; i != -1; i = ne[i]){ 
            int j = e[i], d[j] --;
            //入度为0说明前面已经不会有点指向这个点了,那就将它入队。
            if(d[j] == 0) q[++tt] = j;					
        }
    }
    //tt是队尾,当前队伍的长度为tt - 1。如果队伍元素数量不是n个,说明有的点没有被加入到这个拓扑序里,也就是无法形成拓扑序。
    return tt == n - 1;							
}
int main(){
    cin >> n >> m;
    memset(h, -1, sizeof h);
    for(int i =0; i < m; i ++){
        int a, b;
        cin >> a >> b;
        add(a, b);
        d[b] ++;
    }
    if(topsort()){
        for(int i = 0; i <n; i ++)
            cout << q[i] << " ";
    }
    else cout << "-1" <<endl;
    return 0;
}

DFS

二、排列数字

链接
复习一下深搜写法:

#include<bits/stdc++.h>
using namespace std;
int n, p[10];
bool b[10];
void D (int u){
	//首先写的是终止条件
    if(u == n){
        for(int j = 0; j < n; j ++ )
            cout << p[j] << " ";
        cout << endl;
        return ;
    }
	//然后是正常的套娃
    for(int i = 1; i <= n; i ++)
        if( !b[i] ){
            b[i] = 1;
            p[u] = i;
            D(u + 1);
            b[i] = 0;
        }
    return ;
}
int main(){
    cin >> n;
    D(0);
    return 0;
}

三、n-皇后

然后是这个经典的深搜问题

#include<bits/stdc++.h>
using namespace std;
const int N = 20;
int n, p[N];
char g[N][N];
bool col[N], dg[N], udg[N];
//具体操作:先遍历 第0行 可以放皇后的所有位置,再遍历 第1行 可以放皇后的位置...依次类推到 第n行。
void D (int u){

    if(u == n){
        for(int j = 0; j < n; j ++ )
            puts(g[j]);
        cout << endl;
        return ;
    }
/*   这里 u+i  以及  n-u+i  分别是  (u,i)所在的对角线(这样的 /)  以及  反对角线(这样的 \)
    具体推导是: 令 (u, i) 为 在坐标轴上的 (x, y);
                (x, y)分别在对角线 y = x + b 以及 反对角线 y = -x + b 上。
                坐标轴上的 y=x+b  =>  b=x-y  =>  b=n+x-y  (防止出现负数,开数组的时候是从0开始递增的) ;
                      以及  y=-x+b  =>  b=x+y 。
                这样可以得到所在斜线(对角线)与y轴的焦点坐标(0,b)
                这时的 b 就是 (u,i) 所在的 对角线(或反对角线)的唯一编号;
                这样下来,在同一对角线的所有点都会有一样的唯一编号。
                    (具体多少不重要u, i 可调换,重要的是确保同一对角线上的点处理后所得到的编号唯一)
                */
                /*
                	对角线上的 u, i 调换后答案是一样的。
				    不用纠结 对角线和反对角线 和 坐标序号之类的。
				    不信试一下……
				*/
    for(int i = 0; i < n; i ++)
        if( !col[i] && !dg[u + i] && !udg[n - u + i] ){
            g[u][i] = 'Q';
            col[i] = dg[u + i] = udg[n - u + i] = 1;
            //p[u] 表示第u 行的皇后放在第i位。
            p[u] = i;
            //然后再次基础上进行深搜
            D(u + 1);
            //这里p[u]不必还原,因为对下一次的遍历不会产生影响
            g[u][i] = '.';
            //但是这三个数组一定要还原,不然会影响到接下来的深搜
            col[i] = dg[u + i] = udg[n - u + i] = 0;
        }
    return ;
}
int main(){
    cin >> n;
    for(int i = 0; i < n; i ++)
        for(int j = 0; j < n; j ++)
            g[i][j] = '.';
    D(0);
    return 0;
}

——2020年11月12日(周四)——————————————————

其实n皇后是今天做的啦,断开不太好……

——2020年11月13日(周五)——————————————————

BFS

一、走迷宫

BFS常用来干的事就是可以求出到某一点的最短距离。
题目连接

#include<bits/stdc++.h>
using namespace std;
const int N = 110;
typedef pair<int,int> P;
int m, n;
int g[N][N] , d[N][N];
P q[N * N];

int bfs(){
//hh tt 表示 栈头和栈尾;
    int  hh = 0 , tt = 0;
    q[0] = {0, 0};

    memset(d, -1, sizeof(d));
    d[0][0] = 0;
//上, 下, 左, 右 四个方向;
    int dx[4] = {-1, 1, 0, 0}, dy[4] = {0, 0, -1, 1};
    while(hh <= tt){
    // auto 会根据初始化的内容自动定义变量的类型,这句话等价于 "P t = q[hh ++];"; t是当前所在的点的二维坐标;
        auto t = q[hh ++];
        for(int i = 0; i <4; i ++){
        //x, y 表示原来那个点可以走到的点。
            int x = t.first + dx[i], y = t.second + dy[i];
            //这个点在地图范围内 且 可以走 且 没有走过的时候;
            if(x >= 0 && x < n && y >= 0 && y < m && g[x][y] == 0 && d[x][y] == -1){
         	   //给新的点定义上新的层数, 也就是到起点的最短可行距离;
                d[x][y] = d[t.first][t.second] + 1;
                //将新的点入栈;
                q[ ++ tt] = {x, y};
            }

        }
    }
    //返回终点的距离
    return d[n - 1][m - 1];
}

int main(){
    cin >> n >> m; 
    for(int i = 0;i <n; i ++)
        for(int j = 0 ; j < m; j ++)
            cin >> g[i][j];
    cout << bfs() << endl;
    return 0;
}

二、八数码

题目链接

#include<bits/stdc++.h>
using namespace std;

int bfs(string start){
    
    string end = "12345678x";//定义终点的状态
    
    queue<string> q;//要用到一个每个元素为string类型的队列
    unordered_map<string, int> d;//距离数组,表示对应状态的距离.可以理解为当前字符串对应一个整数类型的距离
    
    q.push (start);//将start 放到队列里面做起点
    d[start] = 0;//起点的距离是0
    
    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
    //深搜开始
    while(q.size()){
        auto t = q.front();
        q.pop();
        
        int distance = d[t];
        
        if(t == end) return distance;//假设到终点就结束
        //状态转移
        int k = t.find('x');//返回x的下标
        int x = k / 3, y = k % 3;//找到x的横、纵坐标
        
        for(int i = 0; i < 4; i ++){
            int a = x + dx[i], b = y + dy[i];//找到下一个状态的横、纵坐标
            if(a >= 0 && a< 3 && b >= 0 && b < 3){//判断下一个位置没有出界
                swap(t[k], t[a * 3 + b]);//交换二维坐标
                
                if(!d.count(t)){//如果更新完的t没有被搜到过的话,那么我们就找到了一个新的状态
                    d[t] = distance + 1;//更新t的距离
                    q.push(t);//将t入队
                }
                
                swap(t[k], t[a * 3 + b]);//别忘了返回状态
            }
            
        }
    }
    return -1;//没找到终点
}
int main(){
    string start;
    for(int i = 0; i < 9; i ++){
        char c;
        cin >> c;
        start += c;
    }//输入字符串
    cout << bfs(start) << endl;//bfs求距离
    
    return 0;
}

——2020年11月14日(周六)——————————————————

看了一晚上容器LIST的内置函数,人都傻了……这是成果

——(完)——————————————————————————

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Prim算法: ```java import java.util.ArrayList; import java.util.HashSet; import java.util.List; import java.util.PriorityQueue; import java.util.Set; public class PrimMST { public static List<Edge> primMST(Graph graph) { List<Edge> result = new ArrayList<>(); Set<Integer> visited = new HashSet<>(); PriorityQueue<Edge> pq = new PriorityQueue<>((a, b) -> a.weight - b.weight); visited.add(0); for (Edge e : graph.edges[0]) { pq.offer(e); } while (!pq.isEmpty() && visited.size() < graph.vertices) { Edge e = pq.poll(); if (visited.contains(e.to)) { continue; } visited.add(e.to); result.add(e); for (Edge next : graph.edges[e.to]) { if (!visited.contains(next.to)) { pq.offer(next); } } } return result; } } ``` Kruskal算法: ```java import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; import java.util.List; public class KruskalMST { public static List<Edge> kruskalMST(Graph graph) { List<Edge> result = new ArrayList<>(); UnionFind uf = new UnionFind(graph.vertices); List<Edge> edges = new ArrayList<>(); for (int i = 0; i < graph.vertices; i++) { edges.addAll(graph.edges[i]); } // sort edges by weight Collections.sort(edges, Comparator.comparingInt(a -> a.weight)); for (Edge e : edges) { int root1 = uf.find(e.from); int root2 = uf.find(e.to); if (root1 != root2) { uf.union(root1, root2); result.add(e); } } return result; } } ``` 测试代: ```java import org.junit.jupiter.api.Assertions; import org.junit.jupiter.api.Test; import java.util.List; public class TestMST { @Test public void testPrim() { Graph g = new Graph(5); g.addEdge(0, 1, 2); g.addEdge(0, 3, 6); g.addEdge(1, 3, 8); g.addEdge(1, 2, 3); g.addEdge(1, 4, 5); g.addEdge(2, 4, 7); g.addEdge(3, 4, 9); List<Edge> result = PrimMST.primMST(g); Assertions.assertEquals(result.size(), 4); Assertions.assertTrue(result.contains(new Edge(0, 1, 2))); Assertions.assertTrue(result.contains(new Edge(1, 2, 3))); Assertions.assertTrue(result.contains(new Edge(1, 4, 5))); Assertions.assertTrue(result.contains(new Edge(0, 3, 6))); } @Test public void testKruskal() { Graph g = new Graph(5); g.addEdge(0, 1, 2); g.addEdge(0, 3, 6); g.addEdge(1, 3, 8); g.addEdge(1, 2, 3); g.addEdge(1, 4, 5); g.addEdge(2, 4, 7); g.addEdge(3, 4, 9); List<Edge> result = KruskalMST.kruskalMST(g); Assertions.assertEquals(result.size(), 4); Assertions.assertTrue(result.contains(new Edge(0, 1, 2))); Assertions.assertTrue(result.contains(new Edge(1, 2, 3))); Assertions.assertTrue(result.contains(new Edge(1, 4, 5))); Assertions.assertTrue(result.contains(new Edge(0, 3, 6))); } } ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值