第九课:最小生成树算法、二分图染色及最大匹配

 

目录

一、最小生成树算法

(1)最小生成树概念

(2)Prim算法

(3)Kruskal算法

二、二分图的染色及最大匹配问题

(1)二分图的定义

 (2)染色法判定二分图

(3)二分图最大匹配——匈牙利算法

最大匹配例题——棋盘覆盖


一、最小生成树算法

(1)最小生成树概念

        一个又n个顶点的连通图G的生成树是包含G中全部定点的一个最小连通子图,它有且仅有n-1条边。一个连通无向图的生成树不是唯一的。

        一个生成树的代价Wie该生成树中所有边的权值之和。对于一个戴荃连通图,其不同生成树的对应的权值和也是不相同的,其中,称代价最小的生成树为最小代价生成树,简称最小生成树。

(2)Prim算法

        类似于最短路算法,尤其类似Dijkstra算法,需要一个dist数组描述其他点与加入集合的点的距离。在最短路算法中,这个dist描述的是其他点到起点的最短距离,而在最小生成树算法中相应的,dist应该描述的是其他点到当前集合的最短距离,即该点到当前连通块的点的距离中的最短距离。

策略:1.进行n次循环,每次选取当前距离集合距离最近的点,使得将每一个点都加入连通块中。(因此也需要一个bool数组判断某个点是否在连通块中)。

           2.将一个点加入连通块之后,需要用这个点更新其他点到集合的距离。

注意点:1.同其他算法一样,初始化g为无穷大,取两点边权值最小的边,避免重边和自环

              2.初始化dist为无穷大,没有起点,不需要将起点加入连通块中。

              3.直接选取第一个点,开始拓展。拓展过程中,如果出现选取的某个点到集合距离为无穷大,直接说明图不连通,无最小生成树。注意第一次选取比较特殊,此时没有加入任何边,所以判断是否连通以及树的代价res增加这两个操作不需要进行。

              4.为了防止自环影响,需要先更新res,再更新dist数组。(如果有自环的话,dist[t]就可能会更新成自环的边,而不是原来的到集合的距离,因此res会出错)

              5.注意用某个点更新其他边的操作,不同于最短路算法,,这里需要比较的是其他点通过这个点到集合的距离,和它原来到集合的距离。即比较g[t][j]的大小而不需要加上dist[t];

代码如下:
 

//这里填你的代码^^
#include<iostream>
#include<cstring>
#include<algorithm>
using  namespace std;

const int N =510;
int n,m;
int g[N][N];
int dist[N];//到集合的最短距离
bool st[N];//是否已经加入到连通块中


int prim()
{
    memset(dist,0x3f,sizeof dist);
    int res=0;
    for(int i=0;i<n;i++)
    {
        int t=-1;
        for(int j=1;j<=n;j++)
            if(!st[j]&&(t==-1||dist[j]<dist[t]))
                t=j;

        if(i&&dist[t]==0x3f3f3f3f)   return 0x3f3f3f3f;   //如果不是第一个点,则图不连通,无最小生成树
        if(i)   res+=dist[t];    //如果不是第一个点,则确定该条边就是点t到集合的最短距离,之后不会更改
        //先更新res,,再更新dist  防止自环
        for(int j=1;j<=n;j++)  dist[j]=min(dist[j],g[t][j]); //注意不是dist[t]+g[t][j]  

        st[t]=true;


    }
    return res;
}


int main()
{
    cin>>n>>m;
    memset(g,0x3f,sizeof g);
    for(int i=0;i<m;i++)
    {
        int a,b,w;
        cin>>a>>b>>w;
        g[a][b]=g[b][a]=min(g[a][b],w);
    }

    int t=prim();
    if(t==0x3f3f3f3f) puts("impossible");
    else cout<<t<<endl;

    return 0;
}
//注意代码要放在两组三个点之间,才可以正确显示代码高亮哦~

作者:yankai
链接:https://www.acwing.com/activity/content/code/content/3678068/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

(3)Kruskal算法

策略:1.Kruskal算法非常简单,只需要考虑边。首先按权值将边按照非递减的顺序排列。然后从小到大选则n条边,如果该边两个端点a,b已经连通,则不选,若不连通,则选入。这样选择的n条边就是最小生成树的n条边。

           2.为了判断a,b是否连通,应该运用并查集。

注意点:1.cnt符合要求应该是n-1。

               2.重载小于号的语法

代码如下:

//这里填你的代码^^
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;

const int N =200010;
int n,m;
int p[N];  //并查集

struct Edge{
    int a,b,w;
    bool operator< (const Edge &W)const//重载小于号
    {
        return w<W.w;
    }
}edges[N];

int find(int x)
{
    if(p[x]!=x) p[x]=find(p[x]);
    return p[x];

}

//将边按权值升序排序,从小到大如果a,b不连通,则加入这条边。

int main()
{
    cin>>n>>m;
    for(int i=0;i<m;i++)
    {
        int a,b,w;
        cin>>a>>b>>w;
        edges[i]={a,b,w};
    }
    sort(edges,edges+m);

    for(int i=1;i<=n;i++)  p[i]=i;

    int res=0,cnt=0;
    for(int i=0;i<m;i++)
    {
        int a=edges[i].a,b=edges[i].b,w=edges[i].w;

        a=find(a),b=find(b);
        if(a!=b)
        {
            p[a]=b;
            res+=w;
            cnt++;
        }
    }

    if(cnt<n-1)  puts("impossible");   //注意最小生成树是n-1条边
    else cout<<res;

    return 0;
}
//注意代码要放在两组三个点之间,才可以正确显示代码高亮哦~

作者:yankai
链接:https://www.acwing.com/activity/content/code/content/3675997/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

二、二分图的染色及最大匹配问题

(1)二分图的定义

个人口语化理解:

可以将图中的点分为两类,同一类的点之间不存在边。

充要条件:一个图是二分图当且仅当这个图不含奇数环。

奇妙比喻辅助理解:

 (2)染色法判定二分图

策略:即将起点u染色黑色,将于起点u相连的所有点染为白色,再将与这些点相连的点染为黑色。如此不出现矛盾则认为该图是二分图。

算法步骤:1.主函数中,遍历所有点进行染色,如果已被染色就不不染色。若一次染色失败则判定不是二分图

                  2.dfs染色函数中,将传入的点染为c色,遍历它与它相连的所有点,若已被染色就判断颜色是否相同,相同则返回false,如果未被染色就染为另一种颜色,若这次染色失败就返回false。最后一切正常的话,返回true表示染色成功

代码如下:

//这里填你的代码^^
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;

const int N =100010, M =200010;
int h[N],e[M],ne[M],idx;
int n,m;
int color[N];

void add(int a,int b)
{
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}


bool dfs(int u,int c)//令有1,2号颜色  因此染另外一种颜色就是3-c
{
    color[u]=c;

    for(int i=h[u];i!=-1;i=ne[i])
    {
        int j=e[i];
        if(!color[j])
        {
            if(!dfs(j,3-c))  return false;//染色,如果返回false,代表染色失败,不是二分图
        }
        else if(color[j]==c)   return false;//j已经染上了颜色,就判断一下符不符合
    }

    return true;
}


int main()
{
    cin>>n>>m;
    memset(h,-1,sizeof h);
    for(int i=0;i<m;i++)
    {
        int a,b;
        cin>>a>>b;
        add(a,b);add(b,a);
    }

    bool flag=true;
    for(int i=1;i<=n;i++)
    {
        if(!color[i])
        {
            if(!dfs(i,1))  
            {
                flag=false;
                break;
            }
        }
    }

    if(flag)  puts("Yes");
    else puts("No");

    return 0;


}
//注意代码要放在两组三个点之间,才可以正确显示代码高亮哦~

作者:yankai
链接:https://www.acwing.com/activity/content/code/content/3681919/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

(3)二分图最大匹配——匈牙利算法

匈牙利算法策略:

1.对左边某一点,找到右边一个与之相连的且没有被选择的点,将两点匹配。

2.若此时右边已经没有未被匹配的点,就选择一个与之相连的但被匹配的点,设为u1,找到已经与之匹配的v1,尝试能不能将v1与另一个点匹配,若可行,则v1换一个点匹配,u1与该点匹配。

3.不行则选则另一个被匹配的点u2,反复如此操作。直到遍历完所有与该点相连的点。该点无法匹配。

注意点:

1.st数组的使用,作用是为一个点匹配的时候,不会重复考虑右边的同一个点。要注意为一个新的点匹配时,要重置st数组。

2.体会递归的方法。

代码如下:

//这里填你的代码^^
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;

const int N =510,M=100010;
int h[N],ne[M],e[M],idx;
bool st[N];  //表示本次循环右边该点是否被考虑过 每次不要重复搜一个点(因为一次循环内不需要再更改这个点的match)
int match[N];  //存储右边的点和左边的哪个点匹配

int n1,n2,m;


void add(int a,int b)
{
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

bool find(int x)
{
    for(int i=h[x];i!=-1;i=ne[i])
    {
        int j=e[i];
        if(!st[j])  //本次循环内没有考虑过j
        {
            st[j]=true;
            if(match[j]==0||find(match[j]))  //j没有匹配过,或者再find一次和j匹配的节点能匹配到新的
            //代表这个j可以和当前这个x匹配
            {
                match[j]=x;
                return true;
            }
        }
    }

    return false;
}




int main()
{
    memset(h,-1,sizeof h);
    cin>>n1>>n2>>m;
    for(int i=0;i<m;i++)
    {
        int a,b;
        cin>>a>>b;
        add(a,b);
    }

    int res=0;
    for(int i=1;i<=n1;i++)
    {
        memset(st,false,sizeof st);
        if(find(i))  res++;//成功匹配
    }

    cout<<res;
    return 0;


}
//注意代码要放在两组三个点之间,才可以正确显示代码高亮哦~

作者:yankai
链接:https://www.acwing.com/activity/content/code/content/3682284/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

最大匹配例题——棋盘覆盖

 思路:易知一个棋盘,尽管去掉某些格点之后,仍然是一个二分图。所以先染色,将棋盘分为二分图的左右两个集合。位置相邻的点互相连接。之后直接用匈牙利算法求得最多有几对点可以匹配。这个数量实际上就是最多可以摆放的纸牌数。

注意:不要忘记判断偏移之后位置是否合法。不能直接dfs(1,1,1)因为有可能该点已被去掉。

代码:
 

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;

typedef pair<int,int> PII;
const int N =110;
int g[N][N];
int n,t;
bool st[N][N];
PII match[N][N];

int dx[4]={0,1,0,-1},dy[4]={1,0,-1,0};

bool dfs(int x,int y ,int c)
{
    g[x][y]=c;
    for(int i=0;i<4;i++)
    {
        int tx=x+dx[i],ty=y+dy[i];
        if(tx>=1&&tx<=n&&ty>=1&&ty<=n&&g[tx][ty]!=-1)//在合法的位置
        {
            if(g[tx][ty]==0)
            {
                if(!dfs(tx,ty,3-c))  return false;
            }
            else if(g[tx][ty]==c) return false;
        }

    }
    return true;
}

bool find(int x,int y)
{
    for(int i=0;i<4;i++)
    {
        int tx=x+dx[i],ty=y+dy[i];
        if(tx>=1&&tx<=n&&ty>=1&&ty<=n&&g[tx][ty]!=-1)//在合法的位置
        {
            if(!st[tx][ty])
            {
                st[tx][ty]=true;
                if((match[tx][ty].first==0&&match[tx][ty].second==0)||find(match[tx][ty].first,match[tx][ty].second))
                {
                    match[tx][ty]={x,y};
                    return true;
                }
            } 
        }
    }
    return false;
}


int main()
{
    cin>>n>>t;
    for(int i=0;i<t;i++)
    {
        int x,y;
        cin>>x>>y;
        g[x][y]=-1;
    }
    
    for(int i=1;i<=n;i++)
    {
        for(int j=0;j<=n;j++)
        {
            if(g[i][j]==0)
            {
                if(!dfs(i,j,1))
                {
                    break;
                }
            }
        }
    }
    
    int res=0;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            if(g[i][j]==1)
            {
                memset(st,false,sizeof st); 
                if(find(i,j)) res++;
            }

        }
    }
    
    cout<<res;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值