总的感受:只是入门的话,很简单啦~模拟一下就会了。(指的是离线算法)
大概思路:
先输入树,以及要查询关系的数据组
然后从根节点开始搜素;
大概流程如下:
按照树的搜索方式找到一个没来过的节点,
查找所有与它有关系的点,
如果那些点已经到过,就找那些点的祖先,也就是两个点之间的最近公共祖先;
找完所有要查询的相关点之后,
将上一个点赋值为当前点的父节点。
将当前点记录已走过,
返回
继续同样的操作……
不太会表达……也不想自己画图,时间紧。
参考大佬博客Orz
……
以为会直接像图一样给出节点和边的信息,是我太幼稚。
如何根据前(后)序遍历和中序遍历求一棵树?
具体参考:二叉树的建立以及三种遍历操作
根据给出的两个遍历(一定要有中序遍历,否则我不会),可以还原一棵树。
还原的过程中,可以顺便进行离散的操作。
边跑边操作,跑完就完成了。
一、1644. 二叉树中的最低公共祖先
题目
怎么说,其实一开始很快就搞定好了……
但是处理的时候没想到输入有负数……
然后用map(真的好用)进行修改……
改了半天……
最后输出判断又卡了我半小时……
总之第二天搞定……
心累
#include<bits/stdc++.h>
using namespace std;
const int N = 10010, M = 1010;
unordered_map<int, int> a, b;
int n, m, pre[N], m_pos[N], ans[M], p[N], q[M], u[M], v[M], st[N];
int ne[N * 2], h[N], e[N * 2], idx, Q[N * 2];
void add(int a, int b, int nm) {
Q[idx] = nm, e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}
int find(int x) {
if(!p[x]) return x;
else return p[x] = find(p[x]);
}
void build(int l, int r, int fa) {
if(l > r ) return ;//不存在(叶节点下面的虚节点)返回
int now = pre[l]; //当前节点名字_build
// printf("l = %d r = %d now = %d\n", l, r, now);
int n_pos = m_pos[now], stl = l + 1;//现在开始
for(stl ; m_pos[pre[stl]] < n_pos && stl <= n; stl ++) {}
stl -= 1;
int son;
build(l + 1, stl, now);//这是左子
build(stl + 1, r, now);//这是右子
for(int i = h[now]; i != -1; i = ne[i]) //所有查询走一遍
if(p[e[i]] && !q[Q[i]])//如果对方已经找到了一个最近祖先,且询问还没有回复
q[Q[i]] = find(e[i]);//记录答案, printf("now Q%d get ans %d\n", Q[i], q[Q[i]])
if(fa) p[now] = fa;//记录父亲_build , printf("now %d 's dad is %d\n", now, fa)
return ;
}
int main() {
memset(h, -1, sizeof h);
cin >> m >> n;
for(int i = 1; i <= n; i ++) {
//因为有很讨厌的负数,a为原->变,b为变->原;
int k; scanf("%d", &k);
a[k] = i, b[i] = k;
m_pos[a[k]] = i;
}
for(int i = 1; i <= n; i ++) {
int k; scanf("%d", &k);
pre[i] = a[k];
}
for(int i = 1; i <= m; i ++) {
int u1, v1; scanf("%d%d", &u1, &v1);
if(!a[u1] || !a[v1]) u[i] = u1, v[i] = v1;
//都存在的时候才进行搜索
else if(a[u1] && a[v1]){
st[i] = 1;
u[i] = a[u1], v[i] = a[v1];
add(u[i], v[i], i), add(v[i], u[i], i);
}
}
build(1, n, 0);
for(int i = 1; i <= m; i ++) {
//无效询问:
if(!st[i]) {
//两个点都没有
if(!a[u[i]] && !a[v[i]]) printf("ERROR: %d and %d are not found.\n", u[i], v[i]);
//或者是其中一个点没有
else if(!a[u[i]]) printf("ERROR: %d is not found.\n", u[i]);
else if(!a[v[i]]) printf("ERROR: %d is not found.\n", v[i]);
}
//找到了答案,答案是其中一个
else {
if(v[i] == u[i]) printf("%d is an ancestor of %d.\n", b[v[i]], b[u[i]]);
else if(q[i] == u[i]) printf("%d is an ancestor of %d.\n", b[u[i]], b[v[i]]);
else if(q[i] == v[i]) printf("%d is an ancestor of %d.\n", b[v[i]], b[u[i]]);
else printf("LCA of %d and %d is %d.\n", b[u[i]], b[v[i]], b[q[i]]);
}
}
return 0;
}