# 最近公共祖先 LCA(离线写法)

本文介绍了如何使用离线算法解决二叉树中最低公共祖先(LCA)的问题。首先,通过前序遍历和中序遍历来还原二叉树,然后采用深度优先搜索(DFS)策略进行树的构建。在搜索过程中,同时处理查询,遇到已找到最近祖先的节点,记录答案。最终,输出查询结果,包括无效询问和有效询问的祖先节点。文章以C++代码实现为例,涉及树的遍历、图的构建和并查集等数据结构与算法知识。
摘要由CSDN通过智能技术生成

总的感受:只是入门的话,很简单啦~模拟一下就会了。(指的是离线算法)
大概思路:
先输入树,以及要查询关系的数据组
然后从根节点开始搜素;
大概流程如下:
按照树的搜索方式找到一个没来过的节点,
查找所有与它有关系的点,
如果那些点已经到过,就找那些点的祖先,也就是两个点之间的最近公共祖先;
找完所有要查询的相关点之后,
将上一个点赋值为当前点的父节点。
将当前点记录已走过,
返回
继续同样的操作……

不太会表达……也不想自己画图,时间紧。
参考大佬博客Orz

……
以为会直接像图一样给出节点和边的信息,是我太幼稚。
如何根据前(后)序遍历和中序遍历求一棵树?
具体参考:二叉树的建立以及三种遍历操作
根据给出的两个遍历(一定要有中序遍历,否则我不会),可以还原一棵树。
还原的过程中,可以顺便进行离散的操作。
边跑边操作,跑完就完成了。

一、1644. 二叉树中的最低公共祖先

题目
怎么说,其实一开始很快就搞定好了……
但是处理的时候没想到输入有负数……
然后用map(真的好用)进行修改……
改了半天……
最后输出判断又卡了我半小时……
总之第二天搞定……
心累

#include<bits/stdc++.h>
using namespace std;
const int N = 10010, M = 1010;
unordered_map<int, int> a, b;
int n, m, pre[N], m_pos[N], ans[M], p[N], q[M], u[M], v[M], st[N];
int ne[N * 2], h[N], e[N * 2], idx, Q[N * 2];
void add(int a, int b, int nm) {
    Q[idx] = nm, e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}
int find(int x) {
    if(!p[x]) return x;
    else return p[x] = find(p[x]);
}
void build(int l, int r, int fa) {
    if(l > r ) return ;//不存在(叶节点下面的虚节点)返回
    int now = pre[l]; //当前节点名字_build
    // printf("l = %d r = %d now = %d\n", l, r, now);
    int n_pos = m_pos[now], stl = l + 1;//现在开始
    for(stl ; m_pos[pre[stl]] < n_pos && stl <= n; stl ++) {}
    stl -= 1;
    int son;
    build(l + 1, stl, now);//这是左子
    build(stl + 1, r, now);//这是右子
    for(int i = h[now]; i != -1; i = ne[i]) //所有查询走一遍
        if(p[e[i]] && !q[Q[i]])//如果对方已经找到了一个最近祖先,且询问还没有回复
            q[Q[i]] = find(e[i]);//记录答案, printf("now Q%d get ans %d\n", Q[i], q[Q[i]])
    if(fa) p[now] = fa;//记录父亲_build , printf("now %d 's dad is %d\n", now, fa)
    return ;
}
int main() {
    memset(h, -1, sizeof h);
    cin >> m >> n;
    for(int i = 1; i <= n; i ++) {
        //因为有很讨厌的负数,a为原->变,b为变->原;
        int k; scanf("%d", &k);
        a[k] = i, b[i] = k;
        m_pos[a[k]] = i;
    }
    for(int i = 1; i <= n; i ++) {
        int k; scanf("%d", &k);
        pre[i] = a[k];
    }
    for(int i = 1; i <= m; i ++) {
        int u1, v1; scanf("%d%d", &u1, &v1);
        if(!a[u1] || !a[v1]) u[i] = u1, v[i] = v1;
        //都存在的时候才进行搜索
        else if(a[u1] && a[v1]){
            st[i] = 1;
            u[i] = a[u1], v[i] = a[v1];
            add(u[i], v[i], i), add(v[i], u[i], i);
        }
    }
    build(1, n, 0);
    for(int i = 1; i <= m; i ++) {
        //无效询问:
        if(!st[i]) {
            //两个点都没有
            if(!a[u[i]] && !a[v[i]]) printf("ERROR: %d and %d are not found.\n", u[i], v[i]);
            //或者是其中一个点没有
            else if(!a[u[i]]) printf("ERROR: %d is not found.\n", u[i]);
            else if(!a[v[i]]) printf("ERROR: %d is not found.\n", v[i]);
        }
        //找到了答案,答案是其中一个
        else {
            if(v[i] == u[i]) printf("%d is an ancestor of %d.\n", b[v[i]], b[u[i]]);
            else if(q[i] == u[i]) printf("%d is an ancestor of %d.\n", b[u[i]], b[v[i]]);
            else if(q[i] == v[i]) printf("%d is an ancestor of %d.\n", b[v[i]], b[u[i]]);
            else printf("LCA of %d and %d is %d.\n", b[u[i]], b[v[i]], b[q[i]]);
        }
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值