[题]负环判断 —— YbtOJ-高效进阶2021-「图论」第3章 最短路径-【例题2】

本文介绍了一种名为SPFA(Shortest Path Faster Algorithm)的算法,用于寻找带有边权大于等于0的图中是否存在负权回路。通过实例演示和关键代码解析,阐述了如何在处理多组数据时,避免理所当然地认为从1开始就能找到负环,强调了特殊情况下的遍历策略。
摘要由CSDN通过智能技术生成

题目
在这里插入图片描述
在这里插入图片描述

看题啊看题啊啊
不要因为做过就理所当然啊啊啊啊!
不一样的啊啊啊啊啊
多组数据以及,以及,以及:边权大于等于0时是双向双向双向边啊啊啊啊!!

#include <bits/stdc++.h>
using namespace std;
const int N = 100010;
int n, m;
int dist[N], cnt[N];
int ne[N], h[N], e[N], w[N], idx = 0;
bool st[N];

void add(int a, int b, int c) { e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++; }

int spfa() {
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0; //可以不用初始化,因为不用求最短路距离,只要有dist来辅助判断是否有负环就可以了。
    queue<int> q;
    for (int i = 1; i <= n; i++) { //所有点都要spfa一遍, 因为从1开始并不一定能找到负环!一开始将所有点放进队列中。
        st[i] = 1;//在队中 
        q.push(i);
    }
    while (q.size()) {
        int t = q.front();
        q.pop();
        st[t] = 0;
        for (int i = h[t]; i != -1; i = ne[i]) {
            int j = e[i];
            if (dist[j] > dist[t] + w[i]) {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                //如果有多个连通块,那么cnt<n的,有负环肯定最后cnt>n; 
                if (cnt[j] >= n)
                    return 1;
                if (!st[j]) {
                    st[j] = 1;
                    q.push(j); /* 别漏了*/
                }
            }
        }
    }
    return 0;
}

int main() {
	int t; 
	cin >> t;
	while(t --) {
	    memset(h, -1, sizeof h);
	    memset(cnt, 0, sizeof cnt);
	    memset(st, 0, sizeof st);
	    cin >> n >> m;
	    for (int i = 0; i < m; i++) {
	        int a, b, c;
	        scanf("%d%d%d", &a, &b, &c);
	        add(a, b, c);
			if(c >= 0)
				add(b, a, c);
	    }
	    if(spfa()) puts("YE5");
	    else puts("N0");
	}
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值