YOLO入门介绍
双阶段two_stage:Faster-rcnn mask-rcnn
单阶段ont_stage:YOLO系列
优缺点:
优势是速度快,缺点是通常情况下效果不太好
Map:综合的衡量检测效果
IOU:所选框与目标框的交并比
衡量标准:
Precision=TP/(TP+FP)
Recall=TP/(TP+FN)
TP;本来是正例,判断也为正例-对的
FP:本来是正例,判断为负例-错的
TN:本来是负例,判断为负例-对的
FN:本来是负例,判断为正例-错的
YOLO V2:
1.Batch Normalization:
使其均值为1,方差为σ,对每一层之后归一化,使得其收敛相对容易,保证其不走偏。如果不加归一化,可能会导致参数走偏越来越大,使用了归一化之后,会在每一层之后进行归一化一次,进行矫正。
2.网络改进:
对于V1的改进就是在原有的训练网络之后,又加了及论训练,不过使用的是高分辨率,原始的训练使用的是244*244,后再加10遍448*448的高分辨率的训练(因为V1中的训练是224*224,而测试使用的是448*448的分辨率,可能会导致问题)
3.网络结构:
去掉了所有的全连接层,而是使用了5次下采样(Maxpooling),输出是从7*7—>13*13
4.卷积核:
卷积核使用的是1*1和3*3的卷积,参考VGG ,卷积核比较小,从而感受野比较大
5.聚类:
使用聚类来将线性框分为了5类
K-means聚类中的距离d=1-IOU(也归一化了【0,1】)
IOU越大,说明两个框越相近,则d就越大,反之则越小
6.感受野:
1.有什么用,干什么的:
通过卷积核的卷积运算,所生成的特征图,将进一步的提升感受范围,感受野一般是看最后一层的特征图,可能一个点进能够感受全局
2.卷积核的设置:
堆叠小的卷积核所需的参数会更小一些,并且卷积的过程越多,特征提取的就会月细致,可能大的卷积核会一步到位,但是堆叠小的卷积核进行多次卷积,不但减小了计算量,而且还使得提取特征的过程变得更加准确
3.感受野变化:
越向后感受野会越大,最后一层的感受也太大,越大的感受野越适合感受体型越大的物体,可以通过不同的卷积核生成的不同的特征图,将感受野大的特征图与感受野小的特征图进行拼接,即可实现即可检测大的物体因为可检测小的物体
4.多尺度:
将输入数据使用resize()操作,变成不同的尺寸,在不同的训练周期,变化不同的尺度,就让网络进行适应,提高检测能力,技能在尺寸中检测到,又能在大尺寸中检测到