scrapy爬取京东笔记本电脑数据并进行简单处理和分析

本文介绍了如何利用Scrapy框架结合Selenium爬取京东搜索结果,获取商品价格、评价数、店铺等信息,并对数据进行处理分析。通过设置下载中间件解决动态加载问题,提取商品详情,包括SKU、标题和详细信息。数据存储在CSV文件中,并使用Jupyter Notebook进行可视化分析,包括品牌平均价格、价格区间、评论数与价格关系、关键词分布等,揭示不同品牌、处理器型号和屏幕尺寸的商品价格趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、环境准备

python3.8.3
pycharm
项目所需第三方包

pip install scrapy fake-useragent requests selenium virtualenv -i https://pypi.douban.com/simple

1.1创建虚拟环境
切换到指定目录创建

virtualenv .venv

创建完记得激活虚拟环境

1.2创建项目

scrapy startproject 项目名称

1.3使用pycharm打开项目,将创建的虚拟环境配置到项目中来
1.4创建京东spider

scrapy genspider 爬虫名称 url

1.4 修改允许访问的域名,删除https:

二、问题分析

爬取数据的思路是先获取首页的基本信息,在获取详情页商品详细信息;爬取京东数据时,只返回40条数据,这里,作者使用selenium,在scrapy框架中编写下载器中间件,返回页面所有数据。
爬取的字段分别是:

商品价格

商品评数

商品店家

商品SKU(京东可直接搜索到对应的产品)

商品标题

商品详细信息

三、spider

import re
import scrapy


from lianjia.items import jd_detailItem


class JiComputerDetailSpider(scrapy.Spider):
    name = 'ji_computer_detail'
    allowed_domains = ['search.jd.com', 'item.jd.com']
    start_urls = [
        'https://search.jd.com/Search?keyword=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&suggest=1.def.0.base&wq=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&page=1&s=1&click=0']

    def parse(self, response):
        lls = response.xpath('//ul[@class="gl-warp clearfix"]/li')
        for ll in lls:
            item = jd_detailItem()
            computer_price = ll.xpath('.//div[@class="p-price"]/strong/i/text()').extract_first()
            computer_commit = ll.xpath('.//div[@class="p-commit"]/strong/a/text()').extract_first()
            computer_p_shop = ll.xpath('.//div[@class="p-shop"]/span/a/text()').extract_first()
            item['computer_price'] = computer_price
            item['computer_commit'] = computer_commit
            item['computer_p_shop'] = computer_p_shop
            meta = {
   
                'item': item
            }
            shop_detail_url = ll.xpath('.//div[@class="p-img"]/a/@href').extract_first()
            shop_detail_url = 'https:' + shop_detail_url
            yield scrapy.Request(url=shop_detail_url, callback=self.detail_parse, meta=meta)
        for i in range(2, 200, 2):
            next_page_url = f'https://search.jd.com/Search?keyword=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&suggest=1.def.0.base&wq=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&page={i}&s=116&click=0'
            yield scrapy.Request(url=next_page_url, callback=self.parse)

    def detail_parse(self, response):
        item = response.meta.get('item')
        computer_sku = response.xpath('//a[@class="notice J-notify-sale"]/@data-sku').extract_first()
        item['computer_sku'] = computer_sku
        computer_title = response.xpath('//div[@class="sku-name"]/text()').extract_first().strip()
        computer_title = ''.join(re.findall('\S', computer_title))
        item['computer_title'] = computer_title
        computer_detail = response.xpath('string(//ul[@class="parameter2 p-parameter-list"])').extract_first().strip()
        computer_detail = ''.join(re.findall('\S', computer_detail))
        item['computer_detail'] = computer_detail
        yield item


三、item

class jd_detailItem(scrapy.Item):
    # define the fields for your item here like:
    computer_sku = scrapy.Field()
    computer_price = scrapy.Field()
    computer_title = scrapy.Field()
    computer_commit = scrapy.Field()
    computer_p_shop = scrapy.Field()
    computer_detail = scrapy.Field()

四、setting

import random


from fake_useragent import UserAgent
ua = UserAgent()
USER_AGENT = ua.random
ROBOTSTXT_OBEY = False
DOWNLOAD_DELAY = random.uniform(0.5, 1)
DOWNLOADER_MIDDLEWARES = {
   
    'lianjia.middlewares.jdDownloaderMiddleware': 543
}
ITEM_PIPELINES = {
   
    'lianjia.pipelines.jd_csv_Pipeline': 300
}

五、pipelines

class jd_csv_Pipeline:
    # def process_item(self, item, spider):
    #     return item
    def open_spider(self, spi
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值