论文十 Do PLMs Know and Understand Ontological Knowledge?

研究通过MemorizingTask和ReasoningTask揭示了大型语言模型(如BERT和RoBERTa)在记忆本体知识上的局限性,它们可能仅能部分掌握语义,对属性的同义转换构成挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

创新点

本文通过设置两个大语言的下游任务Memorizing Task(记忆任务)和Reasoning Task(推理任务)来判模型是否对存储了知识的本体含义,而不是表面的记忆。

实验结果

  1. 大型语言模型(PLMs)可以记忆某些本体知识,但并不完美。
  2. 大型模型并不一定在记忆本体知识方面表现得更好。
  3. 大型语言模型(PLMs)对本体知识背后的语义理解有限。
  4. 对于语言模型来说,属性的同义转换是一个挑战。

Memorizing Task(记忆任务)

Memorizing Task
两种提示词模板
本论文的实验实在Bert和Roberta上进行,可以很好的实现屏蔽词预测任务

Reasoning Task(推理任务)

逻辑推理
逻辑推理
逻辑推理任务通过对输入两条提示词,再要求模型进行预测,从而检测模型的逻辑推理能力

论文地址

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值