创新点
本文通过设置两个大语言的下游任务Memorizing Task(记忆任务)和Reasoning Task(推理任务)来判模型是否对存储了知识的本体含义,而不是表面的记忆。
实验结果
- 大型语言模型(PLMs)可以记忆某些本体知识,但并不完美。
- 大型模型并不一定在记忆本体知识方面表现得更好。
- 大型语言模型(PLMs)对本体知识背后的语义理解有限。
- 对于语言模型来说,属性的同义转换是一个挑战。
Memorizing Task(记忆任务)
本论文的实验实在Bert和Roberta上进行,可以很好的实现屏蔽词预测任务
Reasoning Task(推理任务)
逻辑推理任务通过对输入两条提示词,再要求模型进行预测,从而检测模型的逻辑推理能力