论文十 Do PLMs Know and Understand Ontological Knowledge?

创新点

本文通过设置两个大语言的下游任务Memorizing Task(记忆任务)和Reasoning Task(推理任务)来判模型是否对存储了知识的本体含义,而不是表面的记忆。

实验结果

  1. 大型语言模型(PLMs)可以记忆某些本体知识,但并不完美。
  2. 大型模型并不一定在记忆本体知识方面表现得更好。
  3. 大型语言模型(PLMs)对本体知识背后的语义理解有限。
  4. 对于语言模型来说,属性的同义转换是一个挑战。

Memorizing Task(记忆任务)

Memorizing Task
两种提示词模板
本论文的实验实在Bert和Roberta上进行,可以很好的实现屏蔽词预测任务

Reasoning Task(推理任务)

逻辑推理
逻辑推理
逻辑推理任务通过对输入两条提示词,再要求模型进行预测,从而检测模型的逻辑推理能力

论文地址

`stable-diffusion` 是一个用于图像生成和插值的开源库,其中的 `plms.py` 模块实现了一个基于 Langevin 动力学的概率级联模型(Probabilistic Level-set Model,简称 PLMS)。 PLMS 是一种基于分段函数的生成模型,其核心思想是将生成图像的像素值划分为多个级别,并对每个级别分别建立一个 Langevin 动力学系统来模拟其生成过程。在训练过程中,PLMS 通过最小化生成图像的负对数似然来调整每个级别的分段函数和 Langevin 系统的参数,从而使得生成图像的分布与真实数据的分布尽可能接近。 在 `plms.py` 中,PLMS 的实现主要包括以下几个部分: 1. 分段函数的定义:PLMS 将像素值划分为多个级别,并对每个级别定义一个分段函数,用于计算该级别内像素的概率密度。 2. Langevin 系统的定义:PLMS 对每个级别的分段函数建立一个 Langevin 系统,用于模拟该级别内像素的生成过程。Langevin 系统的参数包括噪声强度、扩散系数和漂移力。 3. Langevin 动力学的模拟:PLMS 使用 Euler-Maruyama 方法对 Langevin 系统进行数值模拟,从而生成新的图像样本。 4. 训练过程的实现:PLMS 通过最小化生成图像的负对数似然来调整分段函数和 Langevin 系统的参数。训练过程采用随机梯度下降算法,每次迭代使用一个小批量的图像样本进行计算。 总的来说,`stable-diffusion` 中的 `plms.py` 实现了一个基于分段函数和 Langevin 动力学的生成模型,可以用于图像生成和插值任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值