求组合数(取模)的两种方法

首先我们要知道什么是组合数。

令r为非负整数。我们把n个元素的集合S的r-组合理解为从S的n个元素中对r个元素的无序选择。换句话说,S的一个r-组合是S的一个子集,该子集由S的n个元素中的r个组成,即S的一个r-元素子集。

由此,求解组合数即变成了求式子C(n, r) 的值。

法一:Pascal公式打表(杨辉三角)

由Pascal公式:
在这里插入图片描述

void init()
{
    for(int i = 1; i <= 1000; ++ i)
    {
        c[i][0] = c[i][i] = 1;
        for(int j = 1; j < i; ++ j)
            c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % mod;
    }
}

显然,由于空间的限制,pascal打表的方式并不适合求取一些比较大的组合数。例如,我们现在要求取的组合数的n的范围是[1,1000000] , 那么我们应该怎么办呢? 那就轮到方法二大显身手了。

法二:逆元求取组合数

由定理可知:如果用C(n, r)表示n-元素集的r-组合的个数,有
在这里插入图片描述
而我们的目标就是计算C(n, r) % mod的值。

const int mod = 1e9 + 7;
const int N = 3e5 + 100;

ll jc[1005],a[N];

void init()  //初始化阶乘
{
    jc[0] = jc[1] = 1;  //注意0的阶乘也要初始化为1
    for(int i = 2; i <= 1005; i ++)
        jc[i] = (jc[i - 1] % mod * i % mod) % mod;
}

ll qpow(ll a, ll b, ll c) // 快速幂
{
    ll res = 1;
    while(b)
    {
        if(b & 1) res = res * a % mod;
        b >>= 1;
        a = a * a % mod;
    }
    return res % mod; //注意细节
}

ll C(int a, int b)
{
    return jc[a] % mod * qpow(jc[b], mod - 2, mod) % mod * qpow(jc[a - b], mod - 2, mod) % mod;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值