Codeforces Round #772 (Div. 2) A - E

A. Min Or Sum

题意:

      初始时有一个数组 a a a,你可以进行一种操作:选择两个不同的下标 i i i j j j,并且构造两个正整数 x x x y y y,使得 x ∣ y = a i ∣ a j x|y = a_i | a_j xy=aiaj,然后用 x x x替换掉原数组中的 a i a_i ai y y y替换掉原数组中的 a j a_j aj
      可以进行这样的操作任意次,询问进行完操作之后数组中剩余元素的和最小是多少。

分析:

      首先我们观察操作具有什么性质。例如现在 a a a中只有三个数: 7 ( 111 ) 2 7(111)_2 7(111)2 4 ( 100 ) 2 4(100)_2 4(100)2以及 5 ( 101 ) 2 5(101)_2 5(101)2,然后我们会怎么样去替换能使得最后的数加和最小呢?
      首先对于 7 ( 111 ) 2 7(111)_2 7(111)2 4 ( 100 ) 2 4(100)_2 4(100)2来说,可以发现他们都在二进制表示的第三位上有1,而我们的或运算只需要其中某一位有1结果就是1,所以我们可以根据这一点,将某些 a a a中的元素在二进制表示的某些位上的1删去。像这里就可以将其变成 7 ( 111 ) 2 ∣ 0 ( 000 ) 2 = 3 ( 011 ) 2 ∣ 4 ( 100 ) 2 7(111)_2 | 0(000)_2 = 3(011)_2 | 4(100)_2 7(111)20(000)2=3(011)24(100)2
      同样的我们无论是剩下的哪一种情况, 5 ( 101 ) 2 5(101)_2 5(101)2中的第一位和第三位都可以删去,因为前两个数或操作后的结果是 7 ( 111 ) 2 7(111)_2 7(111)2。也就是说,我们可以通过上述操作不断的将有重复的二进制位上的 1 1 1减去,直到对于所有 a a a中的元素来说,每一个二进制位上有且只有一个 1 1 1,此时所有元素的加和一定是最小的。且值为 a a a中所有元素的或。

题解:

#include<bits/stdc++.h>
#define endl '\n'
#define IO ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;

const int N = 3e5 + 10, M = 2e5 + 10;
const int inf = 0x3f3f3f3f;
const int mod = 998244353;

int a[N];

void solve() {
    int n;
    cin >> n;
    int res = 0;
    for(int i = 1; i <= n; ++ i) cin >> a[i], res |= a[i];
    cout << res << endl;
}


int main() {  
    IO;
    int t;
    cin >> t;
    while(t --) solve();
    return 0;
}
/*
*/

B. Avoid Local Maximums

题意:

      初始时有一个数组 a a a,如果 a a a中的一个元素既严格大于它左边的元素,又严格大于它右边的元素(即 a i > a i + 1 且 a i > a i − 1 a_i > a_{i + 1}且a_i > a_{i - 1} ai>ai+1ai>ai1),我们就把这个数称为幸运数, a 1 a_1 a1 a n a_n an一定不是幸运数。
      现在定义一种操作,可以选择 a a a中任意一个下标,然后将此位置上的数替换成任意一个不超过 1 e 9 1e9 1e9的正整数,询问使得 a a a数组中不存在幸运数的最小操作是多少,并且输出最终操作后的数组 a a a
分析:
      首先因为需要操作次数最少,所以我们可以贪心的去考虑每一次操作。
      我们分为两种情况去考虑:
      1、如果有两个幸运数之间只相隔了一个数,例如两个幸运数所在的下标为 i i i, i + 2 i + 2 i+2,那么我们只需要将下标 i i i位置上的数改成 m a x ( a i , a i + 2 ) max(a_i, a_{i + 2}) max(ai,ai+2)就可以一次消除两个幸运数。这种情况下每两个幸运数才需花费一次操作。
      2、如果两个幸运数不是只相隔一个数,那么我们就需要把每个幸运数所在位置 x x x上的数改为 m a x ( x − 1 , x + 1 ) max(x - 1, x + 1) max(x1,x+1)即可。这种情况下每个幸运数需要花费一次操作。

题解:
      首先找到所有满足第一种情况的幸运数位置,然后将其改变,如果还存在的幸运数就通过第二种情况改变。

#include<bits/stdc++.h>
#define endl '\n'
#define IO ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;

const int N = 3e5 + 10, M = 2e5 + 10;
const int inf = 0x3f3f3f3f;
const int mod = 998244353;

int a[N], bj[N], b[N];

void solve() {
    int n;
    cin >> n;
    int ans = 0;
    for(int i = 1; i <= n; ++ i) cin >> a[i], b[i] = a[i];
    for(int i = 2; i < n; ++ i) {
        if(a[i] > a[i - 1] && a[i] > a[i + 1]) bj[i] = 1;
    }
    for(int i = 2; i < n; ++ i) {
        if(bj[i] == 1 && bj[i + 2] == 1) {  //成对消除
            bj[i] = 0, bj[i + 2] = 0;
            if(a[i] > a[i + 2]) b[i + 1] = a[i];
            else b[i + 1] = a[i + 2];
            ans ++;
        }
    }

    for(int i = 2; i < n; ++ i) {
        if(bj[i] == 1) b[i] = max(b[i - 1], b[i + 1]), ans ++;
    }
    cout << ans << endl;
    for(int i = 1; i <= n; ++ i) cout << b[i] << " ";
    cout << endl;
    for(int i = 1; i <= n; ++ i) bj[i] = 0;
}


int main() {  
    IO;
    int t;
    cin >> t;
    while(t --) solve();
    return 0;
}
/*
*/

C. Differential Sorting

题意:
      初始时有一个数组 a a a,将一次操作定义为:选择三个不同的位置 x , y , z ( x < y < z ) x,y,z(x < y < z) xyzx<y<z,然后将 a x a_x ax替换成 a y − a z a_y - a_z ayaz。设 n n n为数组 a a a的大小,最多可以操作 n n n次,且操作完的 ∣ a x ∣ |a_x| ax 需要严格小于 1 e 18 1e18 1e18
      询问是否可以在 n n n次操作内将 a a a变为一个非递减序列,如果可以的话还需要输出操作过程。
分析:
      首先我们可以发现,因为 x , y , z x,y,z xyz有先后顺序,所以实即上 a a a数组最后的两个数我们是没有办法改变的,如果最后的两个数已经是递减的了,那么肯定不可能有解。
      然后我们可以从后往前看。对于倒数第三个数来说,只能够用倒数第二个数 − - 倒数第一个数。现在的问题就是倒数第四个数需要小于等于倒数第三个数,那么应该使用哪两个数的差值最好呢?贪心的去考虑的话,设目前需要替换的位置为 i i i,目前可以得到的最小的数,一定是后缀中最小的数 ( a y ) (a_y) (ay) − - 后缀中最大的数 ( a z ) (a_z) (az),且 y < z y < z y<z。但是其实后缀中最大的数已经确定了,肯定是最后一个数,因为我们最终要构造的序列是非递减的,所以最后一个数必须是最大的,也就是说 z = n z = n z=n。然后后缀最小的数肯定就是目前需要替换的数的后一个数,这也是显然的。所以每一次替换 i i i的方案就可以是 ( i , i + 1 , n ) (i, i + 1, n) (i,i+1,n),如果将 i i i替换为后缀最小值 − - 后缀最大值依然要大于 a i + 1 a_{i + 1} ai+1,那么显然不可能有解。如此构造后在极限情况下, a 1 a_1 a1 最小是 − 2 e 5 ∗ 1 e 9 -2e5 * 1e9 2e51e9,也就是 − 2 e 14 -2e14 2e14,满足 ∣ a x ∣ |a_x| ax 不超过 1 e 18 1e18 1e18
      还有另外一种构造方案更为无脑 简单,在倒数第一个数和第二个数满足非递减的前提下,第三个数为 a n − 1 − a n a_{n - 1} - a_n an1an,那么其实第四个数可以构造成和第三个数同样的大小,即也为 a n − 1 − a n a_{n - 1} - a_n an1an,那么就会变成从第 1 1 1个数到第 n − 3 n - 3 n3个数都是相同的大小的非递减序列。此种构造方法需要先判断将 a n − 2 a_{n - 2} an2改为 a n − 1 − a n a_{n-1} - a_n an1an后,这后三个数是否是非递减的,如果不是,那就无解。

题解:
构造方法1:

#include<bits/stdc++.h>
#define endl '\n'
#define IO ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;

const int N = 3e5 + 10, M = 2e5 + 10;
const int inf = 0x3f3f3f3f;
const int mod = 998244353;

ll a[N];
struct node {
    int x, y, z;
};

void solve() {
    int n;
    cin >> n;
    for(int i = 1; i <= n; ++ i) cin >> a[i];
    reverse(a + 1, a + 1 + n);
    if(a[2] > a[1]) {
        cout << -1 << endl;
        return ;
    }
    vector<node> ans;
    for(int i = 3; i <= n; ++ i) {
        if(a[i] > a[i - 1]) {
            ans.push_back({n - i + 1, n - (i - 1) + 1, n});
            a[i] = a[i - 1] - a[1];
            if(a[i] > a[i - 1]) {
                cout << -1 << endl;
                return ;
            }
        }
    }

    cout << ans.size() << endl;
    for(int i = 0; i < ans.size(); ++ i) {
        cout << ans[i].x << " " << ans[i].y << " " << ans[i].z << endl;
    }
}

int main() {  
    IO;
    int t;
    cin >> t;
    while(t --) solve();
    return 0;
}
/*
*/

构造方法2:

#include<bits/stdc++.h>
#define endl '\n'
#define IO ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;

const int N = 3e5 + 10, M = 2e5 + 10;
const int inf = 0x3f3f3f3f;
const int mod = 998244353;

ll a[N];
struct node {
    int x, y, z;
};

void solve() {
    int n, f = 0;
    cin >> n;
    for(int i = 1; i <= n; ++ i) cin >> a[i];
    for(int i = 1; i < n; ++ i) {
        if(a[i] > a[i + 1]) f = 1;
    }
    if(!f) {  //如果已经是非递减
        cout << 0 << endl;
        return ;
    }
    if(a[n - 1] > a[n]) {  //如果倒数前两个已经是递减,无解
        cout << -1 << endl;
        return ;
    }
    if(a[n - 1] - a[n] > a[n - 1]) {  //如果第三个数改完之后还是大于第二个数,无解
        cout << -1 << endl;
        return ;
    }
    vector<node> ans;
    for(int i = n - 2; i >= 1; -- i) {
        ans.push_back({i, n - 1, n}); //把1~n-3都改成第三个数
    }

    cout << ans.size() << endl;
    for(int i = 0; i < ans.size(); ++ i) {
        cout << ans[i].x << " " << ans[i].y << " " << ans[i].z << endl;
    }
}

int main() {  
    IO;
    int t;
    cin >> t;
    while(t --) solve();
    return 0;
}
/*
*/

D. Infinite Set

题意:
      首先会给出一个数组 a a a和一个正整数 p ( 1 ≤ p ≤ 2 e 5 ) p(1 \leq p \leq 2e5) p(1p2e5)。定义一个无穷的整数集合 S S S S S S中的所有元素 x x x都至少满足以下三个条件中的一个:

  • 1 、 1、 1 x = a i ( 1 ≤ i ≤ n ) x = a_i (1 \leq i \leq n) x=ai(1in)
  • 2 、 2、 2 x = 2 y + 1 x = 2y + 1 x=2y+1 y ϵ S y \epsilon S yϵS
  • 3 、 3、 3 x = 4 y x = 4y x=4y y ϵ S y \epsilon S yϵS

      现在需要你计算出 S S S集合中小于 2 p 2^p 2p的数有多少个,答案对 1 e 9 + 7 1e9 + 7 1e9+7取模。
分析:
      因为 p p p非常大,所以很显然找到 S S S中小于 2 p 2^p 2p的具体是哪些数显然是不可行的,所以我们需要换种思路。
      首先观察条件 2 , 3 2,3 23可以发现通过条件 2 2 2生成的一定是一个奇数,而通过条件 3 3 3生成的一定是一个偶数,也就是说通过条件 2 2 2生成的数和通过条件 3 3 3生成的数不可能相同。那么其实我们就可以从奇偶性方面来下手统计集合中数的个数。
      然后观察到 p p p 2 e 5 2e5 2e5的大小,那么可能我们可以从这个 p p p来入手。
      我们可以将数轴分为: [ 2 0 , 2 1 − 1 ] , [ 2 1 , 2 2 − 1 ] , [ 2 2 , 2 3 − 1 ] … … [ 2 p − 1 , 2 p − 1 ] [2 ^ 0, 2 ^ 1 - 1],[2 ^ 1, 2 ^ 2 - 1],[2 ^ 2, 2 ^ 3 - 1]……[2 ^ {p - 1}, 2 ^ p - 1] [20,211][21,221][22,231][2p1,2p1]这样的一些段。
      那么对于某一个区间 [ 2 i − 1 , 2 i − 1 ] [2^{i - 1}, 2^i - 1] [2i1,2i1]来说,如果我们想要知道在这个区间之内,有多少在集合中的点,应该怎么统计呢?
在这里插入图片描述

      首先对于区间 [ 2 i − 1 , 2 i − 1 ] [2^{i - 1}, 2^i - 1] [2i1,2i1]内的所有在集合中的奇数 x x x来说,它可以从什么地方生成呢?我们可以发现,假设 [ 2 i − 2 , 2 i − 1 − 1 ] [2^{i-2}, 2^{i -1}-1] [2i2,2i11]中有 n u m 1 s num1_s num1s个集合 S S S中的数,那么对于这个区间内集合 S S S中的每一个数,都可以通过条件 2 2 2生成一个在区间 [ 2 i − 1 , 2 i − 1 ] [2^{i - 1}, 2^i - 1] [2i1,2i1]中的奇数。
      而对于区间 [ 2 i − 1 , 2 i − 1 ] [2^{i - 1}, 2^i - 1] [2i1,2i1]内的所有偶数 y y y来说,很显然只能通过条件3生成。假设 [ 2 i − 3 , 2 i − 2 − 1 ] [2^{i - 3}, 2^{i - 2} - 1] [2i3,2i21]中有 n u m 2 s num2_s num2s个集合 S S S中的数,那么对于此区间内的每一个数来说,都可以通过条件 3 3 3生成一个在区间 [ 2 i − 1 , 2 i − 1 ] [2^{i - 1}, 2^i - 1] [2i1,2i1]中的偶数。
      当然我们发现我们没有考虑条件 1 1 1的情况,我们怎么样去统计在区间 [ 2 i − 1 , 2 i − 1 ] [2^{i - 1}, 2^i - 1] [2i1,2i1]内的 a j ( 1 ≤ j ≤ n ) a_j(1 \leq j \leq n) aj(1jn)是否被我们通过上述的方法统计进答案中了呢?
      很显然只有当 a j a_j aj无法被任何数通过条件 2 2 2或条件 3 3 3生成时,这个 a j a_j aj才需要被统计,否则就会重复计算,我们把这类无法被生成的点称作"有用的点"。这也说明了初始的 a a a数组中并不是所有的点都是"有用的点",所以我们可以先将数组 a a a中"有用的点"都找出来,方便之后统计。
题解:
      首先我们可以先用一个 s e t set set将数组 a a a中的所有"有用的点"都找出来,这个复杂度是 O ( l o g n ∗ l o g ( a i ) ) O(logn*log(a_i)) O(lognlog(ai))的。接着把找出来的"有用的点"从小到大排序。
      然后就可以开始统计答案了。我们定义一个 f f f数组, f i f_i fi表示从 [ 1 , 2 i − 1 ] [1,2^i-1] [1,2i1]中有多少个在集合 S S S中的点。求解 f i f_i fi的时候,我们可以分奇偶性去转移
      如果 i > = 2 i >= 2 i>=2的话,说明此区间内有奇数能从 [ 2 i − 2 , 2 i − 1 − 1 ] [2^{i-2}, 2^{i -1}-1] [2i2,2i11]转移过来,直接让 f i f_i fi + [ 2 i − 2 , 2 i − 1 − 1 ] [2^{i-2}, 2^{i -1}-1] [2i2,2i11]中且在集合 S S S中数的个数。
      如果 i > = 3 i >= 3 i>=3的话,说明此区间内有偶数能从 [ 2 i − 3 , 2 i − 2 − 1 ] [2^{i-3}, 2^{i -2}-1] [2i3,2i21]转移过来,直接让 f i f_i fi + [ 2 i − 3 , 2 i − 2 − 1 ] [2^{i-3}, 2^{i -2}-1] [2i3,2i21]中且在集合 S S S中数的个数。这部分可以通过前缀和做差求解。
      特殊的情况就是 i < 31 i < 31 i<31的时候,这种情况下区间 [ 2 i − 1 , 2 i − 1 ] [2^{i - 1}, 2 ^ i - 1] [2i1,2i1]内有可能会存在"有用的点",所以我们需要找到大小在 [ 2 i − 1 , 2 i − 1 ] [2^{i - 1}, 2 ^ i - 1] [2i1,2i1]中的"有用的点"的个数,然后添加到 f i f_i fi中。这个部分可以通过二分求解。
      记得细节取模即可。

#include<bits/stdc++.h>
#define endl '\n'
#define IO ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;

const int N = 3e5 + 10, M = 2e5 + 10;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;

int a[N];
int f[N];
set<int> S;
int n, p;

bool gen(int x) {
    if(S.count(x)) return false;
    if(x <= 0) return true;
    if(x & 1) {
        return gen(x / 2);
    }
    else {
        if(x % 4 != 0) return true;
        return gen(x / 4);
    }
    return true;
}

void solve() {
    cin >> n >> p;
    for(int i = 1; i <= n; ++ i) cin >> a[i], S.insert(a[i]);
    vector<int> use;  //找到不可能由其他数生成的数
    for(int i = 1; i <= n; ++ i) {
        S.erase(a[i]);
        if(gen(a[i])) use.push_back(a[i]);
        S.insert(a[i]);
    }

    sort(use.begin(), use.end());

    f[0] = 0;  //f[i] 为 小于 2 ^ i的合法数的个数
    for(int i = 1; i <= p; ++ i) {
         f[i] = f[i - 1]; //继承[2 ^ (i - 2), 2 ^ (i - 1) - 1]的在最终集合中的数的个数
         if(i >= 2) f[i] = (f[i] + (f[i - 1] - f[i - 2])) % mod; //[2 ^ (i - 1), 2 ^ i - 1]中奇数的可行的转移是从[2 ^ (i - 2), 2 ^ (i - 1) - 1]
         if(i >= 3) f[i] = (f[i] + (f[i - 2] - f[i - 3])) % mod; //[2 ^ (i - 1), 2 ^ i - 1]中偶数可行的转移是从[2 ^ (i - 3), 2 ^ (i - 2) - 1]
        if(i <= 30) {
            f[i] = (f[i] + (lower_bound(use.begin(), use.end(), (1 << i)) - lower_bound(use.begin(), use.end(), (1 << (i - 1))))) % mod;
            //找到不可能由其他数生成的数中在[2 ^ (i - 1), 2 ^ i - 1]中的数的个数。
        }
        f[i] %= mod;
    }
    cout << (f[p] % mod + mod) % mod << endl;
}

int main() {  
    IO;
    solve();
    return 0;
}
/*
*/

E. Cars

题意:
      在一条数轴上有 n n n辆车,每辆车可以有一个初始的方向( L , R L, R L,R)和一个初始的位置,且车的方向之后不会再改变。车会以任意的速度行驶(速度大于0)。
      如果两辆车一定不会相遇,我们称其为不相关。
      如果两辆车一定会相遇,我们称其为相关。(相遇之后车辆照常行驶)
      现在给出 m m m条关系,代表车辆之间是相关还是不相关。
      请判断是否存在这样的情况,如果有则输出每辆车的初始位置和方向。
分析:
      首先考虑当两辆车一定不会相遇时,初始的速度方向应该是什么样的。
在这里插入图片描述
      显然其情况应该为上图,因为如果同方向有可能会相遇(当前者车速很小且后者车速很大时)

      然后当两辆车一定会相遇时,情况应该为下图:
在这里插入图片描述
      因为如果方向相同时有可能不相遇(当前者车速很大且后者车速很小时)
      也就是说无论相关还是不相关,只要两辆车存在关系,那么这两辆车的方向就一定不同
      我们可以把这些关系看作是边,而只有当所有边的两边的点方向都不同时,才会有解。这显然是一个二分图染色问题。
      染色完成之后如果存在解,我们还需要构造一种方案,使得所有的存在的关系(相关及不相关)成立,我们可以先建立一个新的图NewG。
      对于相关的两个点来说:如果我们把染色后方向向左的点称作 u u u,方向向右的点称作 v v v的话,如果想要使得这两个点相遇, v v v肯定需要在 u u u的左边,我们可以在NewG中建立一条从 v → u v→u vu的边。
      而对于不相关的两个点来说:如果我们把染色后方向向左的点称作 u u u,方向向右的点称作 v v v的话,如果想要使得这两个点一定不相遇, u u u肯定需要在 v v v的左边,我们可以在NewG中建立一条从 u → v u→v uv的边。
      所以我们其实可以得到一个所有的点与点之间的前后关系(偏序集关系),想要解决这个问题我们只需要对NewG拓扑排序即可。如果存在不存在拓扑序,那么说明有冲突,即无解;否则就按拓扑顺序将所有的车从坐标轴上的 0 0 0开始往右放置即可。
题解:

#include<bits/stdc++.h>
#define endl '\n'
#define IO ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;

const int N = 3e5 + 10, M = 2e5 + 10;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;

vector<int> G[N], New[N], res;
int color[N], f, d[N];
int n, m;

struct edge {
    int type;
    int x, y;
}T[M];

struct node {
    int id, col, pos;
};

void dfs(int u, int fa, int col) {
    if(f) return ;
    if(color[u] != 0) {
        if(col != color[u]) {  //染色过程中冲突
            cout << "NO" << endl;
            f = 1;
        }
        return ;
    }
    color[u] = col;
    for(int i = 0; i < G[u].size(); ++ i) {
        int to = G[u][i];
        if(to == fa) continue;
        dfs(to, u, col ^ 1);
    }
}

bool topsort() {
    queue<int> Q;
    for(int i = 1; i <= n; ++ i) {
        if(!d[i]) Q.push(i);
    }
    while(Q.size()) {
        int h = Q.front();
        Q.pop();
        res.push_back(h);
        for(int i = 0; i < New[h].size(); ++ i) {
            int to = New[h][i];
            d[to] --;
            if(d[to] == 0) Q.push(to);
        }
    }
    if(res.size() == n) return true;
    return false;
}

void solve() {
    cin >> n >> m;
    for(int i = 1; i <= m; ++ i) {
        int type, a, b;
        cin >> type >> a >> b;
        G[a].push_back(b), G[b].push_back(a);
        T[i] = {type, a, b};
    }

    for(int i = 1; i <= n; ++ i) 
        if(color[i] == 0) dfs(i, -1, 2);

    if(f) return ;

    for(int i = 1; i <= m; ++ i) {
        int x = T[i].x, y = T[i].y, ty = T[i].type;
        if(ty == 1) {
            if(color[x] == 3) New[x].push_back(y), d[y] ++;
            else New[y].push_back(x), d[x] ++;
        }
        else {
            if(color[x] == 2) New[x].push_back(y), d[y] ++;
            else New[y].push_back(x), d[x] ++;
        }
    }

    if(!topsort()) {  //不存在拓扑序,说明前后关系有冲突
        cout << "NO" << endl;
        return ;
    }

    vector<node> ans;

    int x = 0;
    for(int i = 0; i < res.size(); ++ i, ++ x) ans.push_back({res[i], color[res[i]], x});

    sort(ans.begin(), ans.end(), [&](node a, node b) {return a.id < b.id;});
    
    cout << "YES" << endl;
    for(int i = 0; i < ans.size(); ++ i) cout << ((ans[i].col == 2) ? "R" : "L")  << " " << ans[i].pos << endl;
}

int main() {  
    IO;
    solve();
    return 0;
}
/*
*/
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值