- 博客(25)
- 收藏
- 关注
原创 【语义分割系列】基于cityscape的DDRNet算法
DDRNet是专门为实时语义分割设计的高效主干。该模型由两个深度分支组成,在这两个分支之间执行多次双边融合,并且还设计了一个新的上下文信息抽取器,名为深度聚合金字塔池模块(DAPPM),用于扩大有效的接受域,并基于低分辨率特征映射融合多尺度上下文。在cityscape数据集上取得了不错的效果。本文详细介绍DDRNet的工程实现以及改进,以供部分有需要的同学写毕设或者发论文,数据集可直接在文中网盘下载。
2024-06-24 20:42:06
711
原创 【计算机视觉】人脸算法之图像处理基础知识(二)
我们常见的图像通常由R(红色)、G(绿色)、B(蓝色)组成。但是在很多时候我们会将彩色图像转换成灰度图像进行处理。此时会用到cv2.cvtColor函数,它有很多转换方式,如。
2024-06-12 21:59:22
526
原创 【语义分割系列】基于camvid数据集的Deeplabv3+分割算法(二)
在前面的内容中,对比了Camvid数据集在基于不同backbone的Deeplabv3+算法上的效果。在这节内容中,本文将介绍在ghostnet的基础上,进一步优化效果,使得Miou提升。通过引入CFAC和CARAFE结构,有效地提升了模型的miou。
2024-06-11 13:41:08
1112
3
原创 【语义分割系列】基于camvid数据集的Deeplabv3+分割算法(一)
本章详细介绍了在公开数据集Camvid上,使用Deeplabv3+算法做对比实验。首先进行了Deeplabv3+的骨干网络实验,分别使用了Xception、resnet50、ghostnet等骨干网络进行实验。然后选择了轻量级的ghostnet作为backbone,再其基础上进行优化,在decoder部分使用了CFAC结构,在不引入过多参数量的情况下,有效地提升了mIOU。后续会进一步优化结构,总之本文内容非常适合有毕设需求和论文需求的小伙伴。
2024-06-09 12:16:55
929
10
原创 【目标检测系列】基于yolov8的头部姿态估计算法
在一些监控场景或者会议场景中,如课堂监控、视频会议中,人们往往容易出现东张西望、走神等注意力不集中的现象。本项目通过预测其头部的各种角度即可发现这个人是否存在走神现象,并加以提醒。本项目在yolov8的基础上实现,通过引入头部角度分支,将头部检测和头部姿态两个任务进行合二为一。在多人或者单人场景中,无论是何种头部姿态均可以准确检测,直接达到商用级别。
2024-06-02 10:22:54
2237
原创 【语义分割系列】基于改进Deeplabv3+的城市街道分割算法(二)
在前面的章节中介绍了ghostnet以及添加GSConv后的效果,。本章在其基础上,继续进行优化。首先在decoder部分引入了ConvFusion模块,涨点非常明显。然后再引入CFAC模块,通过融合backbone的最后两层特征,进一步丰富了解码器中的特征信息。整个优化过程,几乎不会增加额外的参数量,但是效果提升明显。
2024-05-30 20:45:02
894
4
原创 【语义分割系列】基于改进Deeplabv3+的城市街道分割算法(一)
本文在Deeplabv3+的基础上进行改进,在困难数据集上涨点效果明显,有兴趣的小伙伴可直接替换数据集发文章。首先使用ghostnet作为backbone,可以使整个模型非常轻量,即使在cpu上也可以实时推理。然后使用gsconv代替常规decoder部分中的常规卷积,可以进一步减少参数量并提点,未完待续。
2024-05-30 17:41:51
1715
6
原创 【语义分割系列】基于Mobilenetv4的Deeplabv3+分割算法
Mobilenet系列是深度学习中非常经典且具有重大意义的网络结构。目前最新出来的结构是Mobilenetv4,本文在Segframe的基础上给出Mobilenetv4的代码,以及如何在Deeplabv3+中进行调用。使用Unet,或者其他算法的小伙伴也可以参考。(密码:p5y8)
2024-05-28 20:55:04
2001
9
原创 【语义分割系列】基于改进Unet的火灾现场分割算法(完全创新可直接发论文)(二)
首先设计了一个轻量的LightASPP结构,先将特征图处理后,再送入HyCTAS结构中。然后在Decoder层中,使用CSPHet替换原有的卷积层,在减少参数量的同时,也能提升模型精度。
2024-05-17 16:44:17
778
原创 【语义分割系列】基于改进Unet的火灾现场分割算法(完全创新可直接发论文)(一)
目前手中一个火灾现场的数据集,需要分割出两类目标,因为标注时很依靠主管判断,所以导致整个数据集的分割难度较大。本项目以unet为基础算法,骨干网络选用的resnet50,想做轻量级的可以直接用mobilenetv2或者v3,前面都介绍过的。然后引入HyCTAS自注意力结构,来增强特征信息。但是引入HyCTAS会显著增加参数量,因此需要通过一系列操作来降低参数,请看基于改进Unet的火灾现场分割算法(二)。
2024-05-15 11:10:38
976
原创 【语义分割系列】基于改进Unet的城市遥感图像分割算法(二)
在前面的章节中,我们已经实现了基于mobilenetv2的Unet结构和mobilenetv2+dwaspp的unet结构,有明显的提点和提速。在这章节中,我们继续复现加入非局部特征模块和亚像素卷积的部分,以便大家参考。其中加入dwaspp和nonlocal提升比较明显。
2024-05-11 14:57:17
646
原创 【语义分割系列】基于改进Unet的城市遥感图像分割算法(一)
本文在论文【1】上进行复现,原始论文中采用的输电线路数据集,本项目则使用的相近的开源的。基于mobilenetv2实现轻量版本的Unet;加入空洞空间卷积池化金字塔模块(ASPP)和非局部特征提取模块(Non-local)增强特特征图的全局语义信息;最后在上采样阶段使用亚像素卷积操作。
2024-05-11 13:15:25
1340
原创 【语义分割系列】基于改进Deeplabv3+的液压管道分割算法(二)
前面实现了基于mobilenetv2和加入DWASPP的效果,在本节内容中则是复现原论文中提到的CASASPP结构和加入注意力机制模块。SASPP是基于条状卷积的ASPP结构,对管状目标和矩形目标有一定的优势。文中给出了代码实现和文末的总结,有兴趣的小伙伴可以在自己的数据集上尝试。
2024-05-11 09:35:06
477
原创 【语义分割系列】基于改进Deeplabv3+的液压管道分割算法(一)
本文在论文[1]的基础上进行修改后复现,数据集使用的是独家液压管道数据集,旨在方法上的复现,供各位小伙伴们参考。首先,在DeepLabv3+模型中引入轻量级主干网络MobileNetv2(原文为自己设计的MFENet,这个复现有点花时间,后面机会再弄),用于提取形状各异、大小不一的瑕疵特征;其次,引入卷积注意力模块和空间通道注意力模块,分别实现对细小目标边界信息的捕捉和瑕疵区域的关注;接着,在解码部分添加两类多层次特征融合模块,以减少细节信息丢失问题。
2024-05-10 14:25:48
701
1
原创 【语义分割系列】基于改进Deeplabv3+的混凝土裂纹分割算法
本文在论文[1]的基础上进行复现,供具有相似任务的同学参考。首先,使用MobileNetV3作为轻量级主干,大幅降低模型参数量;其次,使用尺度内特征交互模块建模全局信息并引入基于归一化的注意力机制,促进多层次裂缝特征信息交互;此外,提取低层次高分辨率特征后引入混合注意力机制,更有效捕获细节特征;最后,设计C2f-SCConv模块,对融合后的高低层级特征流解码,减小计算冗余,提升对多尺度特征的感知能力。旨在帮助初学者或者科研经历较少的小伙伴快速实现项目或者完成相关科研任务。万字长文,直指毕设。
2024-05-10 12:30:43
5138
42
原创 语义分割基础篇 — DeepLabV3+(一)
Deeplab系列也是分割领域的经典算法,Deeplabv3+则是这个系列的最新算法,充分融合了前面几个版本的优点,很适合大家上手。本文会详细介绍如何使用DeepLabv3+训练自己的数据集,很适合初学者快速完成任务。
2024-03-18 18:20:23
7525
6
原创 语义分割基础篇系列 — Unet(一)
本篇文章主要介绍Unet模型的基础概念以及Unet项目的实现,旨在帮助初学者快速上手。Unet网络是最经典的编解码结构,左侧部分负责特征提取,右侧部分负责特征图的上采样,简单有效的结构是语义分割必掌握的结构之一。在它问世十年以来,无论是工业界还是学术界对它的优化和创新从未停止,一直到现在该结构及其衍生体仍然是最活跃的分割模型。普遍认为,成功训练深度网络需要成千上万个带有注释的训练样本。在本文中,我们提出了一种网络和训练策略,依赖于强大的数据增强,以更有效地利用可用的带有注释的样本。
2024-03-18 14:41:20
4050
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人