机器学习入门课程(3)—— 回归问题和聚类问题

本文介绍了机器学习中的回归问题,包括线性回归、过拟合及其解决方案如岭回归、Lasso回归。接着讨论了聚类问题,重点讲解了K-means和高斯混合模型的原理、优缺点,以及与K-means的比较,还提到了密度聚类和层次聚类的基本概念和流程。
摘要由CSDN通过智能技术生成

机器学习入门课程(3)—— 回归问题和聚类问题

一. 回归问题

回归问题用于预测输入变量和输出变量之间的关系,特别时当输入变量的值发生变化时,输出变量值随之发生变化。直观来说,回归问题等价于函数拟合,选择一条函数曲线使其很好的拟合已知数据且预测未知数据

回归问题分类

  • 自变量个数:一元/多元回归分析
  • 自变量与因变量关系:线性/非线性回归分析
  • 因变量个数:简单/多重回归分析
线性回归

​ 线性回归算法假设特征和结果满足线性关系。这就意味着可以将输入项分别乘以一些常量,再将结果加起来得到输出。

线性回归算法流程

  • 选择拟合函数形式
  • 确定损失函数形式
  • 训练算法,找到回归系数,如最小二乘、梯度下降等
  • 使用算法进行数据预测

线性回归扩展算法

用简单的基函数代替输入变量x,这样就把线性拟合形式扩展到了固定非线性函数的线性组合(多项式拟合)。

过拟合问题:过于贴合训练数据,导致在测试集效果变差。
  • 岭回归
    • 应用结构风险最小化的模型选择策略,在经验风险最小化的基础上加入正则化因子。
    • 正则化因子选择为模型参数的二范数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值