机器学习入门课程(3)—— 回归问题和聚类问题
一. 回归问题
回归问题用于预测输入变量和输出变量之间的关系,特别时当输入变量的值发生变化时,输出变量值随之发生变化。直观来说,回归问题等价于函数拟合,选择一条函数曲线使其很好的拟合已知数据且预测未知数据。
回归问题分类
- 自变量个数:一元/多元回归分析
- 自变量与因变量关系:线性/非线性回归分析
- 因变量个数:简单/多重回归分析
线性回归
线性回归算法假设特征和结果满足线性关系。这就意味着可以将输入项分别乘以一些常量,再将结果加起来得到输出。
线性回归算法流程:
- 选择拟合函数形式
- 确定损失函数形式
- 训练算法,找到回归系数,如最小二乘、梯度下降等
- 使用算法进行数据预测
线性回归扩展算法
用简单的基函数代替输入变量x,这样就把线性拟合形式扩展到了固定非线性函数的线性组合(多项式拟合)。
过拟合问题:过于贴合训练数据,导致在测试集效果变差。
- 岭回归
- 应用结构风险最小化的模型选择策略,在经验风险最小化的基础上加入正则化因子。
- 当正则化因子选择为模型参数的二范数