机器学习(19)——回归与聚类算法(补充)

目录

1 线性回归

1.1 线性回归的特征与目标的关系分析

1.2 线性回归的损失和优化原理

1.3 优化算法 

1.4 线性回归API

1.5 波士顿房价预测

2 欠拟合与过拟合

2.1 定义

2.2 原因以及解决办法:

2.3 正则化类别

3  线性回归的改进-岭回归

4 分类算法-逻辑回归与二分类

4.1 逻辑回归的原理

4.2 损失以及优化

4.3 案例:癌症分类预测-良/恶性乳腺癌肿瘤预测

5 分类的评估方法

5.1 精确率与召回率

5.2 ROC曲线与AUC指标

5.3 模型保存和加载 

6 无监督学习-K-means算法简要介绍

6.1 K-means算法

6.2 Kmeans性能评估指标


1 线性回归

线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。

  • 特点:只有一个自变量的情况称为单变量回归,大于一个自变量情况的叫做多元回归

那么怎么理解呢?我们来看几个例子:

  • 期末成绩 = 0.7×考试成绩+0.3×平时成绩
  • 房子价格 = 0.02×中心区域的距离 + 0.04×城市一氧化氮浓度 + (-0.12×自住房平均房价) + 0.254×城镇犯罪率

上面两个例子,我们看到特征值与目标值之间建立的一个关系,这个可以理解为回归方程

1.1 线性回归的特征与目标的关系分析

线性回归当中的关系有两种,一种是线性关系,另一种是非线性关系。在这里我们只能画一个平面更好去理解,所以都用单个特征举例子。

  • 线性关系

注释:如果在单特征与目标值的关系呈直线关系,两个特征与目标值呈现平面的关系 。

  • 非线性关系

如果是非线性关系,那么回归方程可以理解为:

\omega _{1} x_{1}+w_{2}x_{2}^{2}+\omega _{3}x_{3}^{3}+\cdots

1.2 线性回归的损失和优化原理

假设刚才的房子例子,真实的数据之间存在这样的关系 :

真实关系:真实房子价格 = 0.02×中心区域的距离 + 0.04×城市一氧化氮浓度 + (-0.12×自住房平均房价) + 0.254×城镇犯罪率

 那么现在呢,我们随意指定一个关系(猜测):

随机指定关系:预测房子价格 = 0.25×中心区域的距离 + 0.14×城市一氧化氮浓度 + 0.42×自住房平均房价 + 0.34×城镇犯罪率

请问这样的话,会发生什么?真实结果与我们预测的结果之间是不是存在一定的误差呢?类似这样样子:

那么存在这个误差,我们将这个误差给衡量出来。

损失函数 :

总损失定义为:

  • y_i为第i个训练样本的真实值
  • h(x_i)为第i个训练样本特征值组合预测函数
  • 又称最小二乘法

如何去减少这个损失,使我们预测的更加准确些?既然存在了这个损失,我们一直说机器学习有自动学习的功能,在线性回归这里更是能够体现。这里可以通过一些优化方法去优化(其实是数学当中的求导功能)回归的总损失!!! 

拓展:线性回归的损失函数用最小二乘法,等价于当预测值与真实值的误差满足正态分布时的极大似然估计;岭回归的损失函数,是最小二乘法+L2范数,等价于当预测值与真实值的误差满足正态分布,且权重值也满足正态分布(先验分布)时的最大后验估计;LASSO的损失函数,是最小二乘法+L1范数,等价于等价于当预测值与真实值的误差满足正态分布,且且权重值满足拉普拉斯分布(先验分布)时的最大后验估计

1.3 优化算法 

如何去求模型当中的W,使得损失最小?(目的是找到最小损失对应的W值)

线性回归经常使用的两种优化算法 

  • 正规方程(学霸型)

理解:X为特征值矩阵,y为目标值矩阵,直接求到最好的结果。

缺点:当特征过多过复杂时,求解速度太慢并且得不到结果。

  • 梯度下降(Gradient Descent)(努力型)

理解:α为学习速率,需要手动指定(超参数),α旁边的整体表示方向。

沿着这个函数下降的方向找,最后就能找到山谷的最低点,然后更新W值。

使用:面对训练数据规模十分庞大的任务 ,能够找到较好的结果。

1.4 线性回归API

  • sklearn.linear_model.LinearRegression(fit_intercept=True)
    • 通过正规方程优化
    • fit_intercept:是否计算偏置
    • LinearRegression.coef_:回归系数
    • LinearRegression.intercept_偏置
  • sklearn.linear_model.SGDRegressor(loss="squared_loss", fit_intercept=True, learning_rate ='invscaling', eta0=0.01)
    • SGDRegressor类实现了随机梯度下降学习,它支持不同的loss函数和正则化惩罚项来拟合线性回归模型。
    • loss:损失类型
      • loss=”squared_loss”: 普通最小二乘法
    • fit_intercept:是否计算偏置
    • learning_rate : string, optional
      • 学习率填充
      • 'constant': eta = eta0
      • 'optimal': eta = 1.0 / (alpha * (t + t0)) [default]
      • 'invscaling': eta = eta0 / pow(t, power_t)
        • power_t=0.25:存在父类当中
      • 对于一个常数值的学习率来说,可以使用learning_rate=’constant’ ,并使用eta0来指定学习率。
    • SGDRegressor.coef_:回归系数
    • SGDRegressor.intercept_:偏置

1.5 波士顿房价预测

  • 数据介绍

分析:

回归当中的数据大小不一致,是否会导致结果影响较大,因此需要做标准化处理。同时我们对目标值也需要做标准化处理。

  • 数据分割与标准化处理
  • 回归预测
  • 线性回归的算法效果评估

回归性能评估:

均方误差(Mean Squared Error,MSE)评价机制:

注:y_i(下标)为预测值,\bar{y} 为真实值。

sklearn.metrics.mean_squared_error(y_true, y_pred)

  • 均方误差回归损失
  • y_true:真实值
  • y_pred:预测值
  • return:浮点数结果

流程分析:

1)获取数据集

2)划分数据集

3)特征工程:标准化(无量纲化)

4)预估器流程

fit()--->模型

coef_

intercept_

5)模型评估

代码如下:

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression,SGDRegressor
from sklearn.metrics import mean_squared_error
def linear1():
    """
    正规方程的优化方法对波士顿房价进行预测
    :return:
    """
    # 1)获取数据
    boston = load_boston()

    # 2)划分数据集
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)

    # 3)标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)  # 训练集fit,测试集不fit,因为实际我们不知道要分类的未知数据,所以标准化的平均值和标准差只能用测试集的

    # 4)预估器
    estimator = LinearRegression()
    estimator.fit(x_train, y_train)
    # 5)得出模型
    print("正规方程权重系数为:\n",estimator.coef_)
    print("正规方程偏置为:\n", estimator.intercept_)
    # 6)模型评估
    y_predict = estimator.predict(x_test)
    print("预测房价:\n",y_predict)
    error = mean_squared_error(y_test,y_predict)
    print("正规方程-均方误差为:\n",error)
    return None


def linear2():
    """
    梯度下降的优化方法对波士顿房价进行预测
    :return:
    """
    # 1)获取数据
    boston = load_boston()

    # 2)划分数据集
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)

    # 3)标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)  # 训练集fit,测试集不fit,因为实际我们不知道要分类的
  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,下面是 Python 实现初始化一个 4 维向量和 K 均值聚类算法: ```python import random # 初始化一个 4 维向量 def init_vector(): return [random.uniform(0, 1) for _ in range(4)] # 计算两个向量之间的距离 def dist(vec1, vec2): return sum([(v1 - v2)**2 for v1, v2 in zip(vec1, vec2)]) # K 均值聚类算法 def kmeans(data, k): # 随机初始化 k 个聚类中心 centers = [init_vector() for _ in range(k)] # 初始化每个样本所属的聚类中心的编号 labels = [0] * len(data) while True: # 分配样本到最近的聚类中心 for i, vec in enumerate(data): min_dist = float('inf') for j, center in enumerate(centers): d = dist(vec, center) if d < min_dist: min_dist = d labels[i] = j # 更新聚类中心 new_centers = [[0] * 4 for _ in range(k)] counts = [0] * k for i, vec in enumerate(data): c = labels[i] for j in range(4): new_centers[c][j] += vec[j] counts[c] += 1 for i in range(k): for j in range(4): new_centers[i][j] /= counts[i] # 判断是否收敛 if centers == new_centers: break centers = new_centers return labels ``` 这段代码中,`init_vector()` 函数用于初始化一个 4 维向量,`dist()` 函数用于计算两个向量之间的距离,`kmeans()` 函数实现了 K 均值聚类算法。在 `kmeans()` 函数中,首先随机初始化 k 个聚类中心,然后不断迭代,分配每个样本到最近的聚类中心,更新聚类中心,直到聚类中心不再变化为止。函数返回每个样本所属的聚类中心的编号。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值