第k个排列

LeetCode算法网站算法题

https://leetcode-cn.com/problems/permutation-sequence/

我第一次的思路,使用回溯算法来写,用集合来确定可选择的范围,后来发现其实可以使用一个标记数组来标记当前值是否被选择过。不过这个方法还是错的,以后修改。

#include<iostream>
#include<vector>
#include<climits>
#include<cstdbool>
#include<algorithm>
#include<set>
#include<map>
using namespace std;
class Solution
{
private:
    void make(vector<string>&strA,string str,int len,set<char> VN,int f)
    {
        if(str.size()==len)
        {
            strA.push_back(str);
            return;
        }
        set<char>::iterator it2;
        cout<<"f__"<<f<<"##";
        for(it2=VN.begin(); it2!=VN.end(); it2++)
        {
            cout<<(*it2)<<"  ";
        }
        set<char>::iterator it;

        for(it=VN.begin(); it!=VN.end(); it++)
        {
            char c=(*it);
            //cout<<c<<"::";
            str=str+c;
            set<char>o=VN;
            o.erase(c);
            /*for(it2=o.begin();it2!=o.end();it2++)
            {
                cout<<(*it2)<<endl;
            }*/
            int w=f+1;
            make(strA,str,len,o,w);
        }
        cout<<endl;
    }
public:
    string getPermutation(int n, int k)
    {
        set<char> VN;
        vector<string> strA;
        string str;
        for(int i=0; i<n; i++)
        {
            char c=i+1+'0';
            VN.insert(c);
        }
        int f=1;
        make(strA,str,n,VN,f);
        /*for(int i=0; i<strA.size(); i++)
        {
            cout<<strA[i]<<endl;
        }*/
        //cout<<strA[k-1];
    }
};
int main()
{
    Solution s;
    s.getPermutation(3,3);
    return 0;
}

官方解法:

 

 

class Solution
{
public:
    string getPermutation(int n, int k)
    {
        string ans;
        vector<int>f(n);
        f[0]=1;
        for(int i=1;i<n;i++)
        {
            f[i]=f[i-1]*i;//求i个个数的全排列
        }
        k--;//k自减的操作是因为需要满足一个公式,举个例子
            //当选择第一个位置的时候,k/f[n-1]=3,如果恰好是3为开头的最后一个,那么当前位置应该是3
            //否则开头应当是4,所以当k减去1的时候就不会出现这种情况,当前位置就是k-1/f[n-i]+1
        vector<int>mark(n+1,1);//这是一个标记数组,可选择为1,不可选择为0
        for(int i=1;i<=n;i++)
        {
            int order=k/f[n-i]+1;
            for(int j=1;j<=n;j++)
            {
                order=order-mark[j];//这里的处理很巧妙,如果之前的数可以选择,就会被减去1,否则就会跳过,就会慢慢被数到正确值,而在实际情况中也确实存在无法选择的数字在从小到大的排列时被跳过
                if(order==0)
                {
                   char c=j+'0';
                   ans=ans+c;
                   mark[j]=0;
                   break;
                }
            }
            k=k%f[n-i];
        }
        return ans;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值