算法——无向图的最短路径算法

算法与数据结构 专栏收录该内容
27 篇文章 0 订阅

https://www.jb51.net/article/154796.htm

我是看上面的文章写的程序,他的第一种解法还需要我再理解理解!!

 

BFS一层层寻找目标节点的算法

思路:

1.先从v到u的使用BFS遍历一遍图,得到每个节点到v的最短距离,使用数组first记录;

2.再从v到u的使用BFS遍历一遍图,得到每个节点到u的最短距离leastpath,同时判断first[v]-每一个节点的leastpath,看是否等于每一个节点对应的first数组的值。

3.如果相等,说明当前节点是最小路径的其中一个节点,但是当前算法也有缺憾,就是如果u与v之间有多条最短路径。那么就会出错,这个BUG我目前没有想出解决的办法。

下面程序只能计算无向无权图的一条最短路径,并且该图有且只能有一条最短路径!!很拉跨!

#include<iostream>
#include<vector>
#include<queue>
using namespace std;
//边表节点
typedef struct ArcNode
{
    int Adjvex;
    ArcNode*next=nullptr;
    ArcNode(int x,ArcNode*p):Adjvex(x),next(p) {}
} ArcNode;
//顶点表节点
typedef struct VerNode
{
    int Vervex;
    ArcNode*First_Edge;
    VerNode(int x,ArcNode*p):Vervex(x),First_Edge(p) {}
} VerNode;
class chart
{
private:
    vector<VerNode*>VerNode_List;
    vector<int>Visited_Mark;
public:
    chart() {}
    void make(vector<int>data,int Road_Nums);
    void Print();
    void BFS(int v,int u);
    void Reset();
    ~chart();
};
void chart::make(vector<int>data,int Road_Nums)
{
    VerNode*Node_Pointer_temp;
    ArcNode*Arc_Pointer;
    int i,j,k;
    int Data_Len=data.size();
    for(i=0; i<Data_Len; i++)
    {
        Node_Pointer_temp=new VerNode(data[i],nullptr);
        VerNode_List.push_back(Node_Pointer_temp);
        Visited_Mark.push_back(0);
    }
    for(k=0; k<Road_Nums; k++)
    {
        cout<<"请输入无向图的路径i——j"<<endl;
        cout<<"请输入i:  ";
        cin>>i;
        cout<<endl<<"请输入j:  ";
        cin>>j;
        cout<<endl;
        Arc_Pointer=new ArcNode(j,VerNode_List[i]->First_Edge);
        VerNode_List[i]->First_Edge=Arc_Pointer;
        Arc_Pointer=new ArcNode(i,VerNode_List[j]->First_Edge);
        VerNode_List[j]->First_Edge=Arc_Pointer;
    }
}
void chart::Print()
{
    ArcNode*s;
    int i;
    for(i=0; i<VerNode_List.size(); i++)
    {
        //cout<<VerNode_List[i]->Vervex;
        s=VerNode_List[i]->First_Edge;
        while(s!=nullptr)
        {
            cout<<" "<<VerNode_List[i]->Vervex<<"——"<<s->Adjvex<<" ";
            s=s->next;
        }
        cout<<endl;
    }
}
chart::~chart()
{
    ArcNode*s;
    ArcNode*q;
    int i;
    for(i=0; i<VerNode_List.size(); i++)
    {
        s=VerNode_List[i]->First_Edge;
        delete VerNode_List[i];
        while(s!=nullptr)
        {
            q=s;
            s=s->next;
            delete q;
        }
    }
}
void chart::BFS(int v,int u)
{
    int node=VerNode_List.size();

    //第一遍遍历时,存储各个节点到v节点的最短路径长度
    vector<int>first(node);
    //v节点到自身的距离为0
    first[v]=0;

    VerNode*t;//定点表指针
    ArcNode*tu;//边表指针
    int idx;//记录相连节点下标

    queue<VerNode*>op;
    int q_len;//队列长度

    Visited_Mark[v]=1;
    op.push(VerNode_List[v]);

    int floor=0;//记录离源点的最小层数

    while(!op.empty())
    {
        q_len=op.size();
        floor++;
        for(int i=0; i<q_len; i++)
        {
            t=op.front();
            op.pop();
            for(tu=t->First_Edge; tu!=nullptr; tu=tu->next)
            {
                idx=tu->Adjvex;
                if(Visited_Mark[idx]!=1)
                {
                    Visited_Mark[idx]=1;
                    first[idx]=floor;
                    op.push(VerNode_List[idx]);
                }
            }
        }
    }

    //第一次层序遍历没有问题
    cout<<endl<<"我先打印一下最短的路径长度:"<<first[u]<<endl;


    //重置节点状态
    Reset();
    floor=0;
    //存储最短路径的数组
    vector<int>res;
    res.push_back(u);
    //再从u开始往回遍历
    Visited_Mark[u]=1;
    op.push(VerNode_List[u]);
     while(!op.empty())
    {
        q_len=op.size();
        floor++;
        for(int i=0; i<q_len; i++)
        {
            t=op.front();
            op.pop();
            for(tu=t->First_Edge; tu!=nullptr; tu=tu->next)
            {
                idx=tu->Adjvex;
                if(Visited_Mark[idx]!=1)
                {
                    Visited_Mark[idx]=1;
                    op.push(VerNode_List[idx]);
                    if((first[u]-floor)==first[idx])
                    {
                        res.push_back(idx);
                    }
                }
            }
        }
    }
    for(int i=0;i<res.size();i++)
        cout<<res[i]<<" ";
}
void chart::Reset()
{
    int i=0;
    for(i=0; i<Visited_Mark.size(); i++)
        Visited_Mark[i]=0;
}
int main()
{
    vector<int>qaq= {0,1,2,3,4,5,6,7};
    chart wow;
    wow.make(qaq,9);
    wow.Print();
    wow.BFS(0,2);
    return 0;
}

运行截图:

目前使用DFS,BFS遍历出所有路径的方法,以及Dijkstra,Floyd算法来求得最短路径的方法还不会,以及上面这段程序还有BUG要更改!!

下面是使用Dijkstra算法来对一个带权无向图进行计算最短路径,不带权的图直接就可以把所有弧的权值设置为1,同样可以计算。

Dijkstra算法

思路:

1.从一个单源节点开始计算,寻找当前节点周围没有遍历过的邻接点,并且把当前单源节点设置为以访问状态;

2.如果从当前节点到这些邻接点的距离更短,那么更新这些邻接点的父节点数组为当前节点,距离数组为当前节点的距离数组+这些邻接点与当前节点之间弧的权重;

3.并且在遍历当前节点的邻接点的时候,要选出当前节点与这些邻接点之间弧权重最短的那个邻接点作为下一次的单源节点;

4.对下一次的单元节点的操作与上面操作类似;

5.以上操作需要借助队列来实现。

代码:

#include<iostream>
#include<vector>
#include<queue>
#include<climits>
using namespace std;
//边表节点
typedef struct ArcNode
{
    int Adjvex;
    ArcNode*next=nullptr;
    int wet;
    ArcNode(int x,ArcNode*p,int y):Adjvex(x),next(p),wet(y) {}
} ArcNode;
//顶点表节点
typedef struct VerNode
{
    int Vervex;
    ArcNode*First_Edge;
    VerNode(int x,ArcNode*p):Vervex(x),First_Edge(p) {}
} VerNode;
class chart
{
private:
    vector<VerNode*>VerNode_List;//存储图的每一个节点数据
    vector<int>Visited_Mark;//存储访问数据的情况

    vector<int>Parent;//存储节点的上一个父亲节点
    vector<int>Distance;//存储源节点到每一个节点的最短距离
public:
    chart() {}
    void make(vector<int>data,int Road_Nums);
    void Print();
    void BFS(int v,int u);//这是一个对无权最短路径计算不完全的算法,很有局限性
    void Reset();
    void Dijkstra(int u);
    ~chart();
};
void chart::make(vector<int>data,int Road_Nums)
{
    VerNode*Node_Pointer_temp;
    ArcNode*Arc_Pointer;
    int i,j,k,w;
    int Data_Len=data.size();
    for(i=0; i<Data_Len; i++)
    {
        Node_Pointer_temp=new VerNode(data[i],nullptr);
        VerNode_List.push_back(Node_Pointer_temp);
        Visited_Mark.push_back(0);
        Parent.push_back(-1);
        Distance.push_back(INT_MAX);
    }
    for(k=0; k<Road_Nums; k++)
    {
        cout<<"请输入无向图的路径i——j,以及权重"<<endl;
        cout<<"请输入i:  ";
        cin>>i;
        cout<<endl<<"请输入j:  ";
        cin>>j;
        cout<<endl<<"请输入i——j之间弧的权重";
        cin>>w;
        cout<<endl;
        Arc_Pointer=new ArcNode(j,VerNode_List[i]->First_Edge,w);
        VerNode_List[i]->First_Edge=Arc_Pointer;
        Arc_Pointer=new ArcNode(i,VerNode_List[j]->First_Edge,w);
        VerNode_List[j]->First_Edge=Arc_Pointer;
    }
}
void chart::Print()
{
    ArcNode*s;
    int i;
    for(i=0; i<VerNode_List.size(); i++)
    {
        //cout<<VerNode_List[i]->Vervex;
        s=VerNode_List[i]->First_Edge;
        while(s!=nullptr)
        {
            cout<<" "<<VerNode_List[i]->Vervex<<"——"<<s->Adjvex<<" ";
            s=s->next;
        }
        cout<<endl;
    }
}
chart::~chart()
{
    ArcNode*s;
    ArcNode*q;
    int i;
    for(i=0; i<VerNode_List.size(); i++)
    {
        s=VerNode_List[i]->First_Edge;
        delete VerNode_List[i];
        while(s!=nullptr)
        {
            q=s;
            s=s->next;
            delete q;
        }
    }
}
void chart::BFS(int v,int u)//说实话,这段算法其实很有局限性嗷
{
    int node=VerNode_List.size();

    //第一遍遍历时,存储各个节点到v节点的最短路径长度
    vector<int>first(node);
    //v节点到自身的距离为0
    first[v]=0;

    VerNode*t;//定点表指针
    ArcNode*tu;//边表指针
    int idx;//记录相连节点下标

    queue<VerNode*>op;
    int q_len;//队列长度

    Visited_Mark[v]=1;
    op.push(VerNode_List[v]);

    int floor=0;//记录离源点的最小层数

    while(!op.empty())
    {
        q_len=op.size();
        floor++;
        for(int i=0; i<q_len; i++)
        {
            t=op.front();
            op.pop();
            for(tu=t->First_Edge; tu!=nullptr; tu=tu->next)
            {
                idx=tu->Adjvex;
                if(Visited_Mark[idx]!=1)
                {
                    Visited_Mark[idx]=1;
                    first[idx]=floor;
                    op.push(VerNode_List[idx]);
                }
            }
        }
    }

    //第一次层序遍历没有问题
    cout<<endl<<"我先打印一下最短的路径长度:"<<first[u]<<endl;


    //重置节点状态
    Reset();
    floor=0;
    //存储最短路径的数组
    vector<int>res;
    res.push_back(u);
    //再从u开始往回遍历
    Visited_Mark[u]=1;
    op.push(VerNode_List[u]);
     while(!op.empty())
    {
        q_len=op.size();
        floor++;
        for(int i=0; i<q_len; i++)
        {
            t=op.front();
            op.pop();
            for(tu=t->First_Edge; tu!=nullptr; tu=tu->next)
            {
                idx=tu->Adjvex;
                if(Visited_Mark[idx]!=1)
                {
                    Visited_Mark[idx]=1;
                    op.push(VerNode_List[idx]);
                    if((first[u]-floor)==first[idx])
                    {
                        res.push_back(idx);
                    }
                }
            }
        }
    }
    cout<<"最短路径"<<endl;
    for(int i=0;i<res.size();i++)
        cout<<res[i]<<" ";
}
void chart::Reset()
{
    int i=0;
    for(i=0; i<Visited_Mark.size(); i++)
    {
        Visited_Mark[i]=0;
        Parent[i]=-1;
        Distance[i]=INT_MAX;
    }
}
void chart::Dijkstra(int u)
{
    int node=Parent.size();//节点数
    queue<VerNode*> s;

    s.push(VerNode_List[u]);
    Parent[u]=-1;
    Distance[u]=0;

    while(!s.empty())
    {
        int idx=s.front()->Vervex;
        Visited_Mark[idx]=1;
        int last=-1;//记录最后要入队的那个节点的下标
        int last_wt=INT_MAX;
        for(ArcNode*p=VerNode_List[idx]->First_Edge;p!=nullptr;p=p->next)
        {
            int pls=p->Adjvex;
            if(Visited_Mark[pls]==0)//没有被访问过
            {
                if(((p->wet)+Distance[idx])<Distance[pls])
                {
                    Distance[pls]=((p->wet)+Distance[idx]);
                    Parent[pls]=idx;
                }
                if((p->wet)<last_wt)
                {
                    last=pls;
                    last_wt=(p->wet);
                }
            }
        }
        if(last!=-1)//如果最终选中的节点下标等于-1,那么说明没有与当前节点相连的节点了
        {
            s.push(VerNode_List[last]);
        }
        s.pop();
    }
    cout<<endl<<"当前的源节点是"<<u<<endl;
    //打印出各个数组存储的数据

    cout<<"Distance数组:"<<endl;
    for(int i=0;i<node;i++)
    {
        cout<<Distance[i]<<" ";
    }
    cout<<endl<<"Parent数组:"<<endl;
    for(int i=0;i<node;i++)
    {
        cout<<Parent[i]<<" ";
    }
}
int main()
{
    vector<int>qaq= {0,1,2,3,4,5,6,7,8};
    chart wow;
    wow.make(qaq,14);
    wow.Print();
    wow.BFS(0,4);
    wow.Reset();
    wow.Dijkstra(0);
    return 0;
}

选择测试的无向图:

程序运行:

最后,果然我第一次写的函数在这个无向图翻车了……

具有很强的局限性啊!

建议学习DIjkstra算法和Floyd算法时,看这个视频

https://www.bilibili.com/video/BV1q4411M7r9?from=search&seid=9662298119837732890

思路:

1.使用两个n*n的矩阵Dist,Plain(n是节点的个数),Disti节点到j节点的最短距离,Plain存放的是i到j最短路径的节点遍历顺序,

比如Plain[i][j]=k,那么从i到j的最短路径就要经过k节点,那么就去Plain[k][j]查看Plain[k][j]的值是否为j,如果为,那么最短路径就是

i->k->j,否则就继续像之前那样寻找最短路径上的节点。

 

2.初始换Dist数组,其实就是把邻接表转换成邻接矩阵,从而更好操作,主对角线由于图中弧权重可为负数,所以主对角线上可以初始化为一个极大或者极小的值,然后不相通的两个节点的Dist不能直接设置为INT_MAX,在这上面我吃了大亏,他会整型越界,最好设置为INT_MAX-50

 

3.初始化Plain数组,Plain[i][j]初始化为j,而当i==j的时候,初始化为-1,因为节点中没有-1为下标。

 

4.然后使用三层循环,最外层的k循环,是循环遍历中间节点,内两层循环更新距离数组,如果i先到k这个中间节点在到j节点比之前其他路径更短,那么同时更新路径数组,和顺序数组,很重要的一点在更新的时候,下标为k的行和列以及对角线不参与这种更新。

 

5.最后还有更加重要的一点就是如果i无法到达k的话,就不能更新,因为当k到j的弧的权重为负数的话就会发生非常不好的结果,我深有体会!

 

6.和有向图的一样,可以理解为两个节点之间有两条互相指向的弧且权重相等,不过图中弧如果有负数,会出现一种极其骚的情况就是来回绕!!很迷……所以Floyd可能不适合无向图。

代码:

#include<iostream>
#include<vector>
#include<queue>
#include<climits>
using namespace std;
//边表节点
typedef struct ArcNode
{
    int Adjvex;
    ArcNode*next=nullptr;
    int wet;
    ArcNode(int x,ArcNode*p,int y):Adjvex(x),next(p),wet(y) {}
} ArcNode;
//顶点表节点
typedef struct VerNode
{
    int Vervex;
    ArcNode*First_Edge;
    VerNode(int x,ArcNode*p):Vervex(x),First_Edge(p) {}
} VerNode;
class chart
{
private:
    vector<VerNode*>VerNode_List;//存储图的每一个节点数据
    vector<int>Visited_Mark;//存储访问数据的情况

    vector<int>Parent;//存储节点的上一个父亲节点
    vector<int>Distance;//存储源节点到每一个节点的最短距离
public:
    chart() {}
    void make(vector<int>data,int Road_Nums);
    void Print();
    void BFS(int v,int u);//这是一个对无权最短路径计算不完全的算法,很有局限性
    void Reset();
    void Dijkstra(int u);
    void Floyd();
    ~chart();
};
void chart::make(vector<int>data,int Road_Nums)
{
    VerNode*Node_Pointer_temp;
    ArcNode*Arc_Pointer;
    int i,j,k,w;
    int Data_Len=data.size();
    for(i=0; i<Data_Len; i++)
    {
        Node_Pointer_temp=new VerNode(data[i],nullptr);
        VerNode_List.push_back(Node_Pointer_temp);
        Visited_Mark.push_back(0);
        Parent.push_back(-1);
        Distance.push_back(INT_MAX);
    }
    for(k=0; k<Road_Nums; k++)
    {
        cout<<"请输入无向图的路径i——j,以及权重"<<endl;
        cout<<"请输入i:  ";
        cin>>i;
        cout<<endl<<"请输入j:  ";
        cin>>j;
        cout<<endl<<"请输入i——j之间弧的权重";
        cin>>w;
        cout<<endl;
        Arc_Pointer=new ArcNode(j,VerNode_List[i]->First_Edge,w);
        VerNode_List[i]->First_Edge=Arc_Pointer;
        Arc_Pointer=new ArcNode(i,VerNode_List[j]->First_Edge,w);
        VerNode_List[j]->First_Edge=Arc_Pointer;
    }
}
void chart::Print()
{
    ArcNode*s;
    int i;
    for(i=0; i<VerNode_List.size(); i++)
    {
        //cout<<VerNode_List[i]->Vervex;
        s=VerNode_List[i]->First_Edge;
        while(s!=nullptr)
        {
            cout<<" "<<VerNode_List[i]->Vervex<<"——"<<s->Adjvex<<" ";
            s=s->next;
        }
        cout<<endl;
    }
}
chart::~chart()
{
    ArcNode*s;
    ArcNode*q;
    int i;
    for(i=0; i<VerNode_List.size(); i++)
    {
        s=VerNode_List[i]->First_Edge;
        delete VerNode_List[i];
        while(s!=nullptr)
        {
            q=s;
            s=s->next;
            delete q;
        }
    }
}
void chart::BFS(int v,int u)//说实话,这段算法其实很有局限性嗷
{
    int node=VerNode_List.size();

    //第一遍遍历时,存储各个节点到v节点的最短路径长度
    vector<int>first(node);
    //v节点到自身的距离为0
    first[v]=0;

    VerNode*t;//定点表指针
    ArcNode*tu;//边表指针
    int idx;//记录相连节点下标

    queue<VerNode*>op;
    int q_len;//队列长度

    Visited_Mark[v]=1;
    op.push(VerNode_List[v]);

    int floor=0;//记录离源点的最小层数

    while(!op.empty())
    {
        q_len=op.size();
        floor++;
        for(int i=0; i<q_len; i++)
        {
            t=op.front();
            op.pop();
            for(tu=t->First_Edge; tu!=nullptr; tu=tu->next)
            {
                idx=tu->Adjvex;
                if(Visited_Mark[idx]!=1)
                {
                    Visited_Mark[idx]=1;
                    first[idx]=floor;
                    op.push(VerNode_List[idx]);
                }
            }
        }
    }

    //第一次层序遍历没有问题
    cout<<endl<<"我先打印一下最短的路径长度:"<<first[u]<<endl;


    //重置节点状态
    Reset();
    floor=0;
    //存储最短路径的数组
    vector<int>res;
    res.push_back(u);
    //再从u开始往回遍历
    Visited_Mark[u]=1;
    op.push(VerNode_List[u]);
     while(!op.empty())
    {
        q_len=op.size();
        floor++;
        for(int i=0; i<q_len; i++)
        {
            t=op.front();
            op.pop();
            for(tu=t->First_Edge; tu!=nullptr; tu=tu->next)
            {
                idx=tu->Adjvex;
                if(Visited_Mark[idx]!=1)
                {
                    Visited_Mark[idx]=1;
                    op.push(VerNode_List[idx]);
                    if((first[u]-floor)==first[idx])
                    {
                        res.push_back(idx);
                    }
                }
            }
        }
    }
    cout<<"最短路径"<<endl;
    for(int i=0;i<res.size();i++)
        cout<<res[i]<<" ";
}
void chart::Reset()
{
    int i=0;
    for(i=0; i<Visited_Mark.size(); i++)
    {
        Visited_Mark[i]=0;
        Parent[i]=-1;
        Distance[i]=INT_MAX;
    }
}
void chart::Dijkstra(int u)
{
    int node=Parent.size();//节点数
    queue<VerNode*> s;

    s.push(VerNode_List[u]);
    Parent[u]=-1;
    Distance[u]=0;

    while(!s.empty())
    {
        int idx=s.front()->Vervex;
        Visited_Mark[idx]=1;
        int last=-1;//记录最后要入队的那个节点的下标
        int last_wt=INT_MAX;
        for(ArcNode*p=VerNode_List[idx]->First_Edge;p!=nullptr;p=p->next)
        {
            int pls=p->Adjvex;
            if(Visited_Mark[pls]==0)//没有被访问过
            {
                if(((p->wet)+Distance[idx])<Distance[pls])
                {
                    Distance[pls]=((p->wet)+Distance[idx]);
                    Parent[pls]=idx;
                }
                if((p->wet)<last_wt)
                {
                    last=pls;
                    last_wt=(p->wet);
                }
            }
        }
        if(last!=-1)//如果最终选中的节点下标等于-1,那么说明没有与当前节点相连的节点了
        {
            s.push(VerNode_List[last]);
        }
        s.pop();
    }
    cout<<endl<<"当前的源节点是"<<u<<endl;
    //打印出各个数组存储的数据

    cout<<"Distance数组:"<<endl;
    for(int i=0;i<node;i++)
    {
        cout<<Distance[i]<<" ";
    }
    cout<<endl<<"Parent数组:"<<endl;
    for(int i=0;i<node;i++)
    {
        cout<<Parent[i]<<" ";
    }
}
void chart::Floyd()
{
    int node=Parent.size();
    //Floyd算法所需数组
    vector<vector<int>>Dist(node,vector<int>(node,INT_MAX-50));//距离数组
    vector<vector<int>>Plain(node,vector<int>(node));//顺序数组

    //初始化顺序数组
    for(int i=0; i<node; i++)
        for(int j=0; j<node; j++)
        {
            if(i==j)
            {
                Plain[i][j]=-1;
            }
            else
            {
                Plain[i][j]=j;
            }
        }

    /*先打印初始化的顺序数组*/
    cout<<"——初始化的顺序数组——"<<endl;
    for(int i=0; i<node; i++)
    {
        for(int j=0; j<node; j++)
            cout<<Plain[i][j]<<"  ";
        cout<<endl;
    }
    //初始化距离数组
    for(int i=0; i<node; i++)
    {
        int x=VerNode_List[i]->Vervex;
        for(ArcNode*p=VerNode_List[i]->First_Edge; p!=nullptr; p=p->next)
        {
            int y=p->Adjvex;
            Dist[x][y]=p->wet;
        }
    }


    //距离数组对角线
    for(int i=0; i<node; i++)
        for(int j=0; j<node; j++)
        {
            if(i==j)
                Dist[i][j]=0;
        }
    /*打印初始化的距离数组*/
    cout<<"——初始化的距离数组——"<<endl;
    for(int i=0; i<node; i++)
    {
        for(int j=0; j<node; j++)
        {
            if(i==j)
            {
                cout<<"-  ";
                continue;
            }
            if(Dist[i][j]==(INT_MAX-50))//
                cout<<"∞"<<"  ";
            else
                cout<<Dist[i][j]<<"  ";
        }
        cout<<endl;
    }

    //三层循环
    for(int k=0; k<node; k++)
    {
        for(int i=0; i<node; i++)
        {
            if(i==k)
                continue;
            for(int j=0; j<node; j++)
            {
                if(j==k)
                    continue;
                if(i==j)
                    continue;

                /*cout<<"Dist["<<i<<"]["<<k<<"]: ";
                if(Dist[i][k]==INT_MAX-50)
                    cout<<"∞"<<"  ";
                else
                    cout<<Dist[i][k]<<"  ";
                cout<<"Dist["<<k<<"]["<<j<<"]:  ";
                if(Dist[k][j]==INT_MAX-50)
                    cout<<"∞"<<"  ";
                else
                    cout<<Dist[k][j]<<"  ";
                cout<<"Dist["<<i<<"]["<<j<<"]:  ";
                if(Dist[i][j]==INT_MAX-50)
                    cout<<"∞"<<"  ";
                else
                    cout<<Dist[i][j]<<"  ";
                    cout<<endl;*/



                if((Dist[i][k]+Dist[k][j])<Dist[i][j]&&(Dist[i][k]!=(INT_MAX-50)&&Dist[k][j]!=(INT_MAX-50)))//
                {
                    Dist[i][j]=(Dist[i][k]+Dist[k][j]);
                    Plain[i][j]=Plain[i][k];
                }
            }
        }
        cout<<"——中间节点为"<<k<<"之后距离矩阵的更新——"<<endl;
        for(int i=0; i<node; i++)
        {
            for(int j=0; j<node; j++)
            {
                if(i==j)
                {
                    cout<<"-  ";
                    continue;
                }
                if(Dist[i][j]==INT_MAX-50)
                    cout<<"∞"<<"  ";
                else
                    cout<<Dist[i][j]<<"  ";
            }
            cout<<endl;
        }

    }

    //打印距离数组
    cout<<"——距离数组——"<<endl;
    for(int i=0; i<node; i++)
    {
        for(int j=0; j<node; j++)
        {
            if(i==j)
            {
                cout<<"-  ";
                continue;
            }
            if(Dist[i][j]==INT_MAX-50)
                cout<<"∞"<<"  ";
            else
                cout<<Dist[i][j]<<"  ";
        }
        cout<<endl;
    }


    //打印顺序数组
    cout<<"——顺序数组——"<<endl;
    for(int i=0; i<node; i++)
    {
        for(int j=0; j<node; j++)
            cout<<Plain[i][j]<<"  ";
        cout<<endl;
    }
}

int main()
{
    vector<int>qaq= {0,1,2,3,4};
    chart wow;
    wow.make(qaq,9);
    wow.Print();
    wow.BFS(0,4);
    wow.Reset();
    wow.Dijkstra(0);
    wow.Floyd();
    return 0;
}

运行:

 

 

 

  • 0
    点赞
  • 0
    评论
  • 2
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值