提取CIFAR10和CIFAR100中的图片显示并保存

所使用数据:(cifar10[test_batch]和cifar100[test]测试集的二进制数据)
链接:https://pan.baidu.com/s/1Faw9C3NOdqEcg7ZrlP9Hzg
提取码:yh4k

1.对cifar10图片进行显示并保存

# -*- coding: utf-8 -*-
import numpy as np
import pickle
import imageio

# 解压缩,返回解压后的字典
def unpickle(file):
    fo = open(file, 'rb')
    dict = pickle.load(fo, encoding='latin1')
    fo.close()
    return dict

test_file = "test_batch"
# 显示测试集图片
dict_test = unpickle(file)
x_test = dict_test.get("data")
y_test = dict_test.get("labels")
dict_test = unpickle(file)
x_test = dict_test.get("data")
y_test = dict_test.get("labels")
image_m = np.reshape(x_test[1], (3, 32, 32))
r = image_m[0, :, :]
g = image_m[1, :, :]
b = image_m[2, :, :]
img23 = cv2.merge([r, g, b])
plt.figure()
plt.imshow(img23)
plt.show()

# 保存测试集图片
testXtr = unpickle(test_file)
for i in range(1, 100): #保存全部的使用for i in range(1, 10000):
    img = np.reshape(testXtr['data'][i], (3, 32, 32))
    img = img.transpose(1, 2, 0)
    picName = 'datatest/10/' + str(testXtr['labels'][i]) + '_' + str(i) + '.jpg'
    imageio.imsave(picName, img)#, dpi=(600.0,600.0))
print("test_batch loaded.")

2.对cifar100图片进行显示并保存

from PIL import Image
import numpy as np
TO_ROOT='./datatest/100'
import imageio

def unpickle(file):
    import pickle
    with open(file, 'rb') as fo:
        dict = pickle.load(fo, encoding='latin1')
    return dict

#加载数据集
test_dict=unpickle('test')
data, label = np.array(test_dict['data']).reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1), \
              test_dict['fine_labels']

#显示指定的图片    
numofimg = 25  # 图片序号
img = np.reshape(data[numofimg], (3, 32, 32))  # 导出指定的图片
img = img.transpose(1, 2, 0)

plt.figure(1)
plt.imshow(img)
plt.show()
print(label[numofimg])

#导出所有图片
count=0
for i in range(data.shape[0]):
    count = count + 1
    img = Image.fromarray(data[i])
    picName = 'datatest/100/' + str(label[i]) + '_' + str(i) + '.jpg'
    imageio.imsave(picName, img)  # , dpi=(600.0,600.0))

注:如果你的论文中用到了cifar10和cifar100的数据集,提取出cifar10和cifar100的图片后,在word中插入表格就可以作出类似的图~
在这里插入图片描述

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
由于`transformers`主要是用于自然语言处理的,因此不能直接用于图像分类任务,但可以使用它的预训练模型进行特征提取。以下是使用`transformers`的预训练模型进行CIFAR-10图像分类的代码,并保存loss曲线、准确率曲线和模型。 ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt from transformers import ViTModel # 定义超参数 input_size = 32 num_classes = 10 batch_size = 100 num_epochs = 5 learning_rate = 0.001 # 加载数据集并进行预处理 transform = transforms.Compose( [transforms.Resize((input_size, input_size)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False) # 定义ViT模型 model = ViTModel.from_pretrained('google/vit-base-patch16-224').to(device) model.classifier = nn.Linear(768, num_classes).to(device) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 记录训练过程的loss和accuracy train_loss_list = [] test_loss_list = [] train_acc_list = [] test_acc_list = [] # 训练模型 total_step = len(train_loader) for epoch in range(num_epochs): train_loss = 0 train_total = 0 train_correct = 0 for i, (images, labels) in enumerate(train_loader): images = images.to(device) labels = labels.to(device) # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 记录loss和accuracy train_loss += loss.item() * labels.size(0) _, predicted = torch.max(outputs.data, 1) train_total += labels.size(0) train_correct += (predicted == labels).sum().item() if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item())) # 在测试集上计算loss和accuracy test_loss = 0 test_total = 0 test_correct = 0 with torch.no_grad(): for images, labels in test_loader: images = images.to(device) labels = labels.to(device) outputs = model(images) loss = criterion(outputs, labels) test_loss += loss.item() * labels.size(0) _, predicted = torch.max(outputs.data, 1) test_total += labels.size(0) test_correct += (predicted == labels).sum().item() # 计算平均loss和accuracy train_loss = train_loss / train_total test_loss = test_loss / test_total train_acc = 100 * train_correct / train_total test_acc = 100 * test_correct / test_total train_loss_list.append(train_loss) test_loss_list.append(test_loss) train_acc_list.append(train_acc) test_acc_list.append(test_acc) print('Epoch [{}/{}], Train Loss: {:.4f}, Train Accuracy: {:.2f}%, Test Loss: {:.4f}, Test Accuracy: {:.2f}%' .format(epoch+1, num_epochs, train_loss, train_acc, test_loss, test_acc)) # 保存loss曲线和准确率曲线 plt.plot(train_loss_list, label='Train Loss') plt.plot(test_loss_list, label='Test Loss') plt.legend() plt.savefig('loss.png') plt.clf() plt.plot(train_acc_list, label='Train Accuracy') plt.plot(test_acc_list, label='Test Accuracy') plt.legend() plt.savefig('accuracy.png') # 保存模型 torch.save(model.state_dict(), 'model.pth') ``` 这里我们使用了ViT模型进行特征提取,并通过全连接层进行分类。在训练过程,我们记录了训练和测试的loss和accuracy,并保存了loss曲线和准确率曲线。在最后,我们保存了训练好的模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

来包番茄沙司

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值